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Previous methods of distributed Gibbs sampling for LDA run into either memory or communi-

cation bottleneck. To improve scalability, we propose four strategies: data placement, pipeline

processing, word bundling, and priority-based scheduling. Experiments show that our strategies
significantly reduce the unparallelizable communication bottleneck and achieve good load balanc-
ing, and hence improve scalability of LDA.
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1. INTRODUCTION

Latent Dirichlet Allocation (LDA) was first proposed by Blei, Ng and Jordan to model
documents [Blei et al. 2003]. Each document is modeled as a mixture ofK latent topics,
where each topic,k, is a multinomial distributionφk over aW -word vocabulary. For any
documentdj , its topic mixtureθj is a probability distribution drawn from a Dirichlet prior
with parameterα. For eachith wordxij in dj , a topiczij = k is drawn fromθj , andxij

is drawn fromφk. The generative process for LDA is thus given by

θj ∼ Dir(α),φk ∼ Dir(β), zij = k ∼ θj , xij ∼ φk, (1)

whereDir(∗) denotes the Dirichlet distribution. The graphical model for LDA is illus-
trated in Fig. 1, where the observed variables, i.e., wordsxij and hyper parametersα and
β, are shaded.

Using Gibbs sampling to learn LDA, the computation complexity is K multiplied by
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Fig. 1: The graphical model for LDA.

the total number of word occurrences in the training corpus.Prior work has explored
two main parallelization approaches for speeding up LDA: 1)parallelizing on loosely-
coupled distributed computers, and 2) parallelizing on tightly-coupled multi-core CPUs or
GPUs (Graphics Processing Units). Representative loosely-coupled distributed algorithms
are Dirichlet Compound Multinomial LDA (DCM-LDA) [Mimno and McCallum 2007],
Approximate Distributed LDA (AD-LDA) [Newman et al. 2007],and Asynchronous Dis-
tributed LDA (AS-LDA) [Asuncion et al. 2008], which performGibbs sampling on com-
puters that do not share memory. This distributed approach may suffer from high inter-
computer communication cost, which limits achievable speedup. The tightly-coupled ap-
proach uses multi-core CPUs or GPUs with shared memory (e.g., the work of Yan, et
al. [2009]). Such a shared-memory approach reduces inter-process communication time.
However, once the processors and memory have been configured, the architecture is inflex-
ible when faced with changes in computation demands, and theneed to schedule simulta-
neous tasks with mixed resource requirements. (We discuss related work in greater detail
in Section 2.)

In this work, we improve the scalability of the distributed approach by reducing inter-
computer communication time. Our algorithm, which we name PLDA+, employs four
inter-dependent strategies:

(1) Data placement. Data placement aims to separate CPU-bound tasks and communication-
bound tasks onto two sets of processors. Data placement enables us to employ a
pipeline scheme (discussed next), to mask communication bycomputation.

(2) Pipeline processing. To ensure that a CPU-bound processor is not blocked by com-
munication, PLDA+ conducts Gibbs sampling for aword bundle while performing
inter-computer communication on the background. Suppose Gibbs sampling is per-
formed on the words ‘foo’ and ‘bar’. PLDA+ fetches the metadata for the word ‘bar’
while performing Gibbs sampling on the word ‘foo’. The communication time for
fetching the metadata of ‘bar’ is masked by the computation time for sampling ‘foo’.

(3) Word bundling. In order to ensure that communication time can be effectively masked,
the CPU time must be long enough. Revisiting the example of sampling ‘foo’ and
‘bar’, the CPU time for sampling the word ‘foo’ should be longer than the commu-
nication time for the word ‘bar’ in order to mask the communication time. Suppose
we performed Gibbs sampling according to the order of words in documents, each
Gibbs sampling time unit would be too short to mask the required communication
time. Since LDA treats a document as a bag of words and entirely ignores word or-
der, we can flexibly process words on a processor in any order without considering
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Table I: Symbols associated with LDA used in this paper.

D Number of documents.
K Number of topics.
W Vocabulary size.
N Number of words in the corpus.
xij Theith word indj document.
zij Topic assignment for wordxij .
Ckj Number of topick assigned todj document.
Cwk Number of wordw assigned to topick.
Ck Number of topick in corpus.
Cdoc Document-topic count matrix.
Cword Word-topic count matrix.
Ctopic Topic count matrix.
θj Probability of topics given documentdj .
φk Probability of words given topick.
α Dirichlet prior.
β Dirichlet prior.
P Number of processors.
|Pw| Number ofPw processors.
|Pd| Number ofPd processors.
pi Theith processor.

document boundaries. Word bundling combines words into large computation units.

(4) Priority-based scheduling. Data placement andword bundling are static allocation
strategies for improving pipeline performance. However, run time factors would al-
most always affect the effectiveness of a static allocationscheme. Therefore, PLDA+
employs a priority-based scheduling scheme to smooth out run-time bottlenecks.

The above four strategies must work together to improve speedup. For instance, without
word bundling, pipeline processing is futile because of short computation units. With-
out distributing the metadata of word bundles, communication bottlenecks at themaster
processor could cap scalability. By lengthening the computation units via word bundling,
while shortening communication units via data placement, we can achieve more effective
pipeline processing. Finally, a priority-based schedulerhelps smooth out unexpected run-
time imbalances in workload.

The rest of the paper is organized as follows: We first presentLDA and related dis-
tributed algorithms in Section 2. In Section 2.3 we present PLDA, an MPI implementation
of Approximate Distributed LDA (AD-LDA). In Section 3 we analyze the bottleneck of
PLDA and depict PLDA+. Section 4 demonstrates that the speedup of PLDA+ on large-
scale document collections significantly outperforms PLDA. Section 5 offers our conclud-
ing remarks. For the convenience of readers, we summarize the notations used in this paper
in Table I.

2. LDA OVERVIEW

Similar to most previous work [Griffiths and Steyvers 2004],we use symmetric Dirichlet
priors in LDA for simplicity. Given the observed wordsx, the task of inference for LDA is
to compute the posterior distribution of the latent topic assignmentsz, the topic mixtures
of documentsθ, and the topicsφ.
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2.1 LDA Learning

Griffiths and Steyvers [2004] proposed using Gibbs sampling, a Markov-chain Monte
Carlo (MCMC) method, to perform inference for LDA. By assuming a Dirichlet priorβ on
φ, φ can be integrated (hence removed from the equation) using the Dirichlet-multinomial
conjugacy. MCMC is widely used as an inference method for latent topic models, e.g.,
Author-Topic Model [Rosen-Zvi et al. 2010], Pachinko Allocation [Li and McCallum
2006], and Special Words with Background Model [Chemudugunta et al. 2007]. More-
over, since the memory requirement of VEM is not nearly as scalable as that of MCMC
[Newman et al. 2009], most existing distributed methods forLDA use Gibbs sampling
for inference, e.g., DCM-LDA, AD-LDA, and AS-LDA. In this paper we focus on Gibbs
sampling for approximate inference. In Gibbs sampling, it is usual to integrate out the mix-
turesθ and topicsφ and just sample the latent variablesz. The process is calledcollapsing.
When performing Gibbs sampling for LDA, we maintain two matrices: a word-topic count
matrix Cword in which each elementCwk is the number of wordw assigned to topick,
and a document-topic count matrixCdoc in which each elementCkj is the number of topic
k assigned to documentdj . Moreover, we maintain a topic count vectorCtopic in which
each elementCk is the number of topick assignments in document collection. Given the
current state of all but one variablezij , the conditional probability ofzij is

p(zij = k|z¬ij ,x¬ij , xij = w,α, β) ∝
C¬ij

wk + β

C¬ij
k +Wβ

(

C¬ij
kj + α

)

, (2)

where¬ij means that the corresponding word is excluded in the counts.Wheneverzij is
assigned with a new topic drawn from Eq. (2),Cword, Cdoc andCtopic are updated. After
enough sampling iterations to burn in the Markov chain,θ andφ are estimated.

2.2 LDA Performance Enhancement

Various approaches have been explored for speeding up LDA. Relevant parallel methods
for LDA include:

—Mimno and McCallum [2007] proposed Dirichlet Compound Multinomial LDA (DCM-
LDA), where the datasets are distributed to processors, Gibbs sampling is performed
on each processor independently without any communicationbetween processors, and
finally a global clustering of the topics is performed.

—Newman, et al. [2007] proposed Approximate Distributed LDA(AD-LDA), where each
processor performs a local Gibbs sampling iteration followed by a global update using
a reduce-scatter operation. Since the Gibbs sampling on each processor is performed
with the local word-topic matrix, which is only updated at the end of each iteration, this
method is calledapproximate distributed LDA.

—In [Asuncion et al. 2008], a purely asynchronous distributed LDA was proposed, where
no global synchronization step like in [Newman et al. 2007] is required. Each processor
performs a local Gibbs sampling step followed by a step of communicating with other
random processors. In this paper we label this method as AS-LDA.

—Yan, et al. [2009] proposed parallel algorithms of Gibbs sampling and VEM for LDA
on GPUs. A GPU has massively built-in parallel processors with shared memory.

Besides these parallelization techniques, the following optimizations can reduce LDA
model learning computation cost:
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—Gomes, et al. [2008] presented an enhancement of the VEM algorithm using a bounded
amount of memory.

—Porteous, et al. [2008] proposed a method to accelerate the computation of Eq. (2).
The acceleration is achieved by no approximations but usingthe property that the topic
probability vectors for documentdj , θj , are sparse in most cases.

2.3 PLDA: An MPI Implementation of AD-LDA

We previously implemented PLDA [Wang et al. 2009], an MPI implementation of AD-
LDA [Newman et al. 2007]. PLDA has been successfully appliedin real-world applica-
tions such as communication recommendation [Chen et al. 2009]. AD-LDA distributesD
training documents overP processors, withDp = D/P documents on each processor.
AD-LDA partitions document contentx = {xd}

D
d=1

into {x|1, . . . ,x|P } and the corre-
sponding topic assignmentsz = {zd}

D
d=1

into {z|1, . . . , z|P }, wherex|p andz|p exist
only on processorp. The document-topic count matrix,Cdoc, is likewise distributed and
we represent the processor-specific document-topic count matrices asCdoc

|p . Each proces-

sor maintains its own copy of the word-topic count matrix,Cword. Moreover, we use
Cword

|p to temporarily store word-topic counts accumulated from local documents’ topic
assignments on each processor. In each Gibbs sampling iteration, each processorp updates
z|p by sampling everyzij|p ∈ z|p from the approximate posterior distribution:

p(zij|p = k | z¬ij ,x¬ij , xij|p = w) ∝
C¬ij

wk + β

C¬ij
k +Wβ

(

C¬ij

kj|p + α
)

, (3)

and updatesCdoc
|p andCword

|p according to the new topic assignments. After each iteration,

each processor recomputes word-topic counts for its local documentsCword
|p and uses an

AllReduce operation to reduce and broadcast the newCword to all processors. One can
refer to [Wang et al. 2009] for the MPI implementation details of AD-LDA.

We have also implemented AD-LDA on MapReduce [Dean and Ghemawat 2004; Chu
et al. 2006] as reported in [Wang et al. 2009]. Using MapReduce, many operations can
be carried out by combining three basic phases: mapping, shuffling and reducing. We
used MapReduce to implementAllReduce. However, before and after each iteration of
the MapReduce-based AD-LDA, a disk IO is required to fetch and update the word-topic
matrix at themaster processor. In addition, local data must also be written ontodisks. The
benefit of forcing IOs between iterations is tolerating faults. However, using MPI, a fault
recovery scheme can be more efficiently implemented via lazyIOs after the completion of
each iteration. The primary reason for conducing IOs is because MapReduce cannot ensure
two consecutive iterations of sampling the same set of data being scheduled on the same
processor. Thus, documents and metadata (document-topic counts) must be fetched into
memory at the beginning of each iteration even in the absenceof a fault. Certainly, these
shortcomings of MapReduce can be improved. But MPI seemed tobe a more attractive
choice at the time when this research was conducted.

3. PLDA+: AN ENHANCED DISTRIBUTED LDA

To further speed up LDA, the PLDA+ algorithm employs four inter-dependent strategies
to reduce inter-computer communication cost: data placement, pipeline processing, word
bundling, and priority-based scheduling.
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Fig. 3: The spread patterns of the updated topic distribution of a word from one processor for PLDA, AS-LDA
and PLDA+.

3.1 Bottlenecks for PLDA

As presented in the previous section, in PLDA,D documents are distributed overP pro-
cessors with approximatelyD/P documents on each processor. This is shown with a
D/P -by-W matrix in Fig. 2(A), whereW indicates the vocabulary of document collec-
tion. The word-topic count matrix is also distributed, witheach processor keeping a local
copy, which is theW -by-K matrix in Fig. 2(A).

In PLDA, after each iteration of Gibbs sampling, local word-topic counts on each pro-
cessor are globally synchronized. This synchronization process is expensive partly because
a large amount of data is sent and partly because the synchronization starts only when the
slowest processor has completed its work. To avoid unnecessary delays, AS-LDA [Asun-
cion et al. 2008] does not perform global synchronization like PLDA. In AS-LDA a proces-
sor only synchronizes word-topic counts with another finished processor. However, since
word-topic counts can be outdated, the sampling process cantake a larger number of itera-
tions than that PLDA does to converge. Fig. 3(A) and Fig. 3(B)illustrate the spread patterns
of the updated topic distribution for a word from one processor to the others for PLDA and
AS-LDA. PLDA has to synchronize all word updates after a fullGibbs sampling iteration,
whereas AS-LDA performs updates only with a small subset of processors. The memory
requirements for both PLDA and AS-LDA are O(KW ), since the whole word-topic matrix
is maintained on all processors.

Although they apply different strategies for model combination, existing distributed
methods share two characteristics:

—The methods have to maintain all word-topic counts in memoryfor each processor.

—The methods have to send and receive the whole word-topic matrix between processors
for updates.

For the former characteristic, suppose we want to estimate aφ with W words andK
topics from a large-scale dataset. When eitherW or K is large to a certain extent, the
memory requirement will exceed that available on a typical processor. For the latter char-
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acteristic, the communication bottleneck caps the potential for speeding up the algorithm.
A study of high performance computing [Graham et al. 2005] shows that floating-point
instructions historically improve at59% per year, but inter-processor bandwidth improves
26% per year, and inter-processor latency reduces only15% per year. The communication
bottleneck will only exacerbate over additional years.

3.2 Strategies of PLDA+

Let us first introduce pipeline-based Gibbs sampling. The pipeline technique has been used
in many applications to enhance throughput, such as the instruction pipeline in modern
CPUs [Shen and Lipasti 2005] and in graphics processors [Blinn 1991]. Although pipeline
does not decrease the time for a job to be processed, it can efficiently improve through-
put by overlapping communication with computation. Fig. 4 illustrates the pipeline-based
Gibbs sampling for four words,w1, w2, w3 andw4. Fig. 4(A) demonstrates the case when
ts ≥ tf + tu, and Fig. 4(B) the case whents < tf + tu, wherets, tf andtu denote the time
for Gibbs sampling, fetching the topic distribution, and updating the topic distribution,
respectively.

In Fig. 4(A), PLDA+ begins by fetching the topic distribution for w1. Then it begins
Gibbs sampling onw1, and at the same time, it fetches the topic distribution forw2. After
it has finished Gibbs sampling forw1, PLDA+ updates the topic distribution forw1 onPw

processors. Whents ≥ tf+tu, PLDA+ can begin Gibbs sampling onw2 immediately after
it has completed sampling forw1. The total ideal time for PLDA+ to processW words will
beWts + tf + tu. Fig. 4(B) shows a suboptimal scenario where the communication time
cannot be entirely masked. PLDA+ is not able to begin Gibbs sampling for w3 until w2

has been updated andw3 fetched. The example shows that in order to successfully mask
communication, we must schedule tasks to ensure as much as possible thatts ≥ tf + tu.

To make the pipeline strategy effective orts ≥ tf + tu, PLDA+ divides processors
into two types: one maintains documents and the document-topic count matrix to perform
Gibbs sampling (Pd processors), while the other stores and maintains the word-topic count
matrix (Pw processors). The structure is shown in Fig. 2(B). During each iteration of Gibbs
sampling, aPd processor assigns a new topic to a word in a typical three-stage process:

(1) Fetch the word’s topic distribution from aPw processor.
(2) Perform Gibbs sampling and assign a new topic to the word.
(3) Update thePw processors maintaining the word.

The corresponding spread pattern for PLDA+ is illustrated in Fig. 3(C), which avoids both
the global synchronization of PLDA and the large number of iterations required by AS-
LDA for convergence.

One key property that PLDA+ takes advantage of is that each round of Gibbs sampling
can be performed in any word order. Since LDA models a document as a bag of words and
ignores word order, we can perform Gibbs sampling accordingto any word order as if we
reordered words in bags. When a word that occurs multiple times in the documents of aPd

processor, all instances of that word can be processed together. Moreover, for words that
occur infrequently, we bundle them with words that occur more frequently to ensure thatts
is sufficiently long. In fact, if we knowtf +tu, we can decide how many word-occurrences
to process in each Gibbs sampling batch to ensure thatts − (tf + tu) is minimized.

To perform Gibbs sampling word by word, PLDA+ builds word indexes to documents
on eachPd processor. We then organize words in acircular queue as shown in Fig. 5.
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Fig. 5: Vocabulary circular queue in PLDA+.

Gibbs sampling is performed by going around the circular queue. To avoid concurrent
access to the same words, we schedule different processors to begin at different positions
of the queue. For example, Fig. 5 shows fourPd processors,Pd0, Pd1, Pd2 andPd3 start
their first word fromw0, w2, w4 andw6, respectively. To ensure that this scheduling
algorithm works, PLDA+ must also distribute the word-topicmatrix in a circular fashion
onPw processors. This static allocation scheme enjoys two benefits. First, the workload
amongPw processors can be relatively balanced. Second, avoiding two Pd nodes from
concurrently updating the same word can roughly maintain serializability of the word-topic
matrix onPw nodes. Please note that the distributed scheme of PLDA+ ensures stronger
serializability than PLDA because aPd node of PLDA+ can obtain the word-topic matrix
updates of otherPd nodes in the same Gibbs sampling iteration. The detailed description
of word placement are presented in Section 3.3.1.

Although word placement can be performed in an optimal way, scheduling must deal
with run-time dynamics. First, some processors may run faster than others, and this may
build up bottlenecks at some of thePw processors. Second, when multiple requests are
pending, the scheduler must be able to set priorities based on request deadlines. The details
of PLDA+’s priority-based scheduling scheme are describedin Section 3.4.3.

3.3 Algorithm for Pw Processors

The task of thePw processors is to process, fetch and update queries fromPd processors.
PLDA+ distributes the word-topic matrix toPw processors according to the words con-
tained in the matrix. After placement, eachPw processor keeps approximatelyW/|Pw|
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words with their topic distributions.

3.3.1 Word Placement over Pw Processors. The goal of word placement is to ensure
spatial load balancing. We would like to make sure that all processors receive about the
same number of requests in a round of Gibbs sampling.

For bookkeeping, we maintain two data structures. First, weusemi to record the number
of Pd processors on which a wordwi resides, which is also the weight of the word. ForW
words, we maintain a vector~m = (m1, . . . ,mW ). The second data structure keeps track
of eachPw processor’s workload, or the sum of weights of all words on that processor.
The workload vector is denoted as~l = (l1, . . . , l|Pw|).

A simple placement method is to place words independently and uniformly at random
onPw processors. This method is referred to asRandom Word Placement. Unfortunately,
this placement method may cause frequent load imbalances. To balance workload, we use
theWeighted Round-Robin method for word placement. We first sort words indescending
order by their weights. We then pick the word with the largestweight from the vocabulary
(e.g.,wi), place it on thePw processor (e.g.,pw) with the least workload, and then update
the workload ofpw. This placement process is repeated until all words have been placed.
Weighted Round-Robin has been empirically shown to achievebalanced load with high
probability [Berenbrink et al. 2008].

3.3.2 Processing Requests from Pd Processors. After placing words with their topic
distributions onPw processors, thePw processors begin to process requests from thePd

processors. APw processorpw first builds its associated word-topic count matrixCword
|pw

by receiving initial word-topic counts from allPd processors. Then thePw processor
pw begins to process requests fromPd processors. In PLDA+ we define three types of
requests:

—fetch(wi, pw, pd): a request for fetching the topic distribution of a wordw by aPd

processorpd. For each request, thePw processorpw returns the topic distributionCword
w|pw

of the wordw, which will be used asC¬ij
wk in Eq. (2) for Gibbs sampling.

—update(w, ~u, pw): a request for updating the topic distribution of a wordw using the
update information~u onpd. ThePw processor updates the topic distribution of the word
w using~u.

—fetch(pw, pd): a request for fetching the overall topic counts on aPw processorpw by
aPd processorpd. ThePw Processorpw sums up the topic distributions for all words
on pw as a vectorCtopic

|pw . Once allCtopic

|pw are fetched from eachPw processor bypd,

they are summed up and used asC¬ij
k in Eq. (2) for Gibbs sampling.

EachPw processor handles all requests related to the words it is responsible for main-
taining. To ensure that requests are served in a timely manner, we employed a priority
scheme sorted by request deadlines. According to its local word processing order, aPd

processor needs communication completion for its fetch requests at various time units.
When thePd processor sends its requests toPw processors, deadlines are set in the request
header. APw processor serves waiting requests based on their deadlines.

3.4 Algorithm for Pd Processors

The algorithm forPd processors executes according to the following steps:
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(1) At the beginning, it allocates documents overPd processors and then builds an inverted
index for documents on eachPd processor.

(2) It groups the words in the vocabulary intobundles for performing Gibbs sampling and
sending requests.

(3) It schedules word bundles to minimize communication bottlenecks.
(4) Finally, it performs pipeline-based Gibbs sampling iteratively until the termination

condition is met.

In the following, we present the four steps in detail.

3.4.1 Document Allocation and Building an Inverted Index. Before performing Gibbs
sampling, we first have to distributeD documents toPd processors. The goal of document
allocation is to achieve good CPU load balance amongPd processors. PLDA may suffer
from imbalanced load since it has a global synchronization phase at the end of each Gibbs
sampling iteration, which may force fast processors to waitfor the slowest processor. In
contrast, Gibbs sampling in PLDA+ is performed with no synchronization requirement. In
other words, a fast processor can start its next round of sampling without having to wait
for a slow processor. However, we also do not want some processors to be substantially
slow and miss too many cycles of Gibbs sampling. This will result in the similar short-
coming that AS-LDA suffers — taking a larger number of iterations to converge. Thus,
we would like to allocate documents to processors in a balanced fashion. This is achieved
by employingRandom Document Allocation. EachPd processor gets approximateD/|Pd|
documents. The time complexity of this allocation step isO(D).

After documents have been distributed, we build an invertedindex for the documents
of eachPd processor. Using this inverted index, each time aPd processor fetches the
topic distribution of a wordw, it performs Gibbs sampling for all instances ofw on that
processor. After sampling, the processor sends back the updated topic distribution to the
correspondingPw processor. The clear benefit is that for multiple occurrences of a word
on a processor, we only need to perform two communications, one fetch and one update,
substantially reducing communication cost. The index structure for each wordw is:

w → {(d1, z1), (d1, z2), (d2, z1) . . .}, (4)

in which,w occurs in documentd1 for 2 times and there are2 entries. In implementation,
to save memory, we will record all occurrences ofw in d1 as one entry,(d1, {z1, z2}).

3.4.2 Word bundle. Bundling words is to prevent the duration of Gibbs samplingsfrom
being too short to mask communication. Use an extreme example: a word takes place only
once on a processor. Performing Gibbs sampling on that word takes a much shorter time
than the time required to fetch and update the topic distribution of that word. The remedy
is intuitive: combining a few words into a bundle so that the communication time can be
masked by the longer duration of Gibbs sampling time. The trick here is that we have to
make sure the targetPw processor is the same for all words in a bundle so that each time
only one communication IO is required for fetching topic distributions for all words in a
bundle.

For aPd processor, we start bundling words according to their target Pw processors.
For all words with the same targetPw processor, we first sort them in descending order
of occurrence times and build a word list. We then iteratively pick a high frequency word
from the head of the list and several low frequency words fromthe tail of the list and group
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them into a word bundle. After building word bundles, each time we will send a request to
fetch topic distributions for all words in a bundle. For example, when learning topics from
NIPS dataset consisting of 12-year NIPS papers, we combine{curve, collapse, compiler,
conjunctive, . . .} as a bundle, in whichcurve is a high frequency word and the rest are low
frequency words in this dataset.

3.4.3 Building the Request Scheduler. It is crucial to design an effective scheduler
to determine the next word bundle to send requests for topic distributions during Gibbs
sampling. We employ a simple pseudo-random scheduling scheme.

In this scheme, words in the vocabulary are stored in a circular queue. During Gibbs
sampling, words are selected from this queue in a clockwise or counterclockwise order.
EachPd processor enters this circular queue with a different offset to avoid concurrent
access to the samePw processor. The starting point of eachPd process at each Gibbs
sampling iteration is different. This randomness avoids forming the same bottlenecks from
one iteration to another. Since circular scheduling is a static scheduling scheme, a bottle-
neck can still be formed at somePw processors when multiple requests arrive at the same
time. Consequently, somePd processors may need to wait for a response before Gibbs
sampling can start. We remedy this shortcoming by registering a deadline for each request,
as described in Section 3.3.2. Requests on aPw processor are processed according to their
deadlines. A request will be discarded if its deadline has been missed. Due to the stochas-
tic nature of Gibbs sampling, occasionally missing a round of Gibbs sampling does not
affect overall performance. Our pseudo-random schedulingpolicy ensures the probability
of same words being skipped repeatedly is negligibly low.

3.4.4 Pipeline-based Gibbs Sampling. Finally, we perform pipeline-based Gibbs sam-
pling. As shown in Eq. (2), to compute and assign a new topic for a given wordxij = w in
a documentdj , we have to obtainCword

w , Ctopic andCdoc
j . The topic distribution of doc-

umentdj is maintained by aPd processor. While the up-to-date topic distributionCword
w

is maintained by aPw processor, the global topic countCtopic should be collected over
all Pw processors. Therefore, before assigning a new topic for a word w in a document, a
Pd processor has to requestCword

w andCtopic from Pw processors. After fetchingCword
w

andCtopic, thePd processor computes and assigns new topics for occurrences of the word
w. Then thePd processor returns the updated topic distribution for the word w to the
responsiblePw processor.

For aPd processorpd, the pipeline scheme is performed according to the following
steps:

(1) Fetch overall topic counts for Gibbs sampling.

(2) SelectF word bundles and put them in the thread pooltp to fetch topic distributions
for the words in each bundle. Once a request is responded byPw processors, the
returned topic distributions are put in a waiting queueQpd.

(3) For each word inQpd, pick its topic distribution to perform Gibbs sampling.

(4) After Gibbs sampling, put the updated topic distributions in the thread pooltp to send
update requests toPw processors.

(5) Select a new word bundle and put it intp.

(6) If the update condition is met, fetch new overall topic counts.
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Fig. 6: The communication scheme of PLDA+.

(7) If the termination condition is not met, go to Step (3) to start Gibbs sampling for other
words.

In Step (1),pd fetches the overall topic distributionsCtopic. In this step,pd just sends the
requestsfetch(pw, pd) to eachPw processor. The requests are returned withCtopic

|pw , pw ∈

{0, . . . , |Pw| − 1} from all Pw processors. Processorpd thus getsCtopic by summing
overall topic counts from eachPw processor,Ctopic =

∑

pw Ctopic

|pw .
Since the thread pooltp can send requests and process the returned results in parallel,

in Step (2) it puts a number of requests to fetch topic distributions simultaneously in case
some requests are delayed. Since the requests are sent at thesame time, they are assigned
with the same deadline. Once a response is returned, it will start Gibbs sampling immedi-
ately. Here, we mention the number of pre-fetch requests asF . In PLDA+, F should be
properly set to make sure the waiting queueQpd always has returned topic distributions
of words waiting for Gibbs sampling. If not, it will stop to wait for the incoming member
of Qpd, which is a part of the communication time cost of PLDA+. To make best use of
threads in the thread pool,F should be larger than the number of threads in the pool.

It is expensive forPw processors to process the request for overall topic counts because
the operation has to access the topic distributions for eachword on eachPw processor. For-
tunately, as indicated by the results of AD-LDA [Newman et al. 2009], topic assignments
in Gibbs sampling are not sensitive to the values of the overall topic counts. We thus reduce
the frequency of fetching overall topic counts to improve the efficiency ofPw processors.
Therefore, in Step (6), we do not fetch overall topic counts frequently. In experiments,
we will show that, by fetching new overall topic counts only after performing one pass of
Gibbs sampling for all words, PLDA+ can obtain the same learning quality as LDA and
PLDA.

The pipeline scheme is depicted in Fig. 6, where the process of fetchingCtopic is not
shown for simplicity.

3.4.5 Fault Tolerance. In PLDA+, we provide a fault-recovery solution similar to
PLDA. We perform checkpointing only forz|pd on Pd processors. This is because: (1)
on thePd side,x|pd can be reloaded from dataset, andCdoc

|pd can be recovered fromz|pd;

(2) on thePw side,Cword
pw can also be recovered fromz|pd. The recovery code is at the be-

ginning of PLDA+: if there is a checkpoint on the disk, load it; otherwise perform random
initialization.

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 13

3.5 Parameters and Complexity

In this section, we analyze parameters that may influence theperformance of PLDA+. We
also analyze the complexity of PLDA+ and compare it with PLDA.

3.5.1 Parameters. Given the total number of processorsP , the first parameter is the
proportion of the number ofPw processors toPd processors,γ = |Pw|/|Pd|. The larger the
value ofγ, the more the average time for Gibbs sampling onPd processors will increase as
fewer processors are used to perform CPU-bound tasks. At thesame time, the average time
for communication will decrease since more processors serve asPw to process requests.
We have to balance the number ofPw andPd processors to (1) minimize both compu-
tation and communication time, and (2) ensure that communication time is short enough
to be masked by computation time. This parameter can be determined once we know the
average time for Gibbs sampling and communication of the word-topic matrix. Suppose
the total time for Gibbs sampling of the whole dataset isTs, the communication time for
transferring the topic distributions of all words from one processor to another processor is
Tt. ForPd processors, the sampling time will beTs/|Pd|. Suppose we transfer word topic
distributions simultaneously toPw processors, and thus transfer time will beTt/|Pw|. To
make sure the sampling process is able to overlap the fetching and updating process, we
have to make sure

Ts

|Pd|
>

2Tt

|Pw|
. (5)

SupposeTs = Wt̄s wheret̄s is the average sampling time for all instances of a word, and
Tt = Wt̄f = Wt̄u, wheret̄f and t̄u is the average fetching and update time for a word,
we get

γ =
|Pw|

|Pd|
>

t̄f + t̄u
t̄s

, (6)

wheret̄f , t̄u and t̄s can be obtained by performing PLDA+ on a small dataset and then
empirically set an appropriateγ value. Under the computing environment for our experi-
ments, we empirically setγ = 0.6.

The second parameter is the number of threads in the thread pool R, which caps the
number of parallel requests. Since the thread pool is used toprevent sampling from being
blocked by busyPw processors,R is determined by the network environment.R can be
empirically tuned during Gibbs sampling. That is, when the waiting time for the prior
iteration is long, the thread pool size is increased.

The third parameter is the number of requestsF for pre-fetching the topic distributions
before performing Gibbs sampling onPd processors. This parameter depends onR, and
in experiments we setF = 2R.

The last parameter is the maximum intervalintermax for fetching the overall topic
counts from allPw processors during Gibbs sampling ofPd processors. This parameter
influences the quality of PLDA+. In experiments, we can achieve LDA models with similar
quality to PLDA and LDA by settingintermax = W .

It should be noted that the optimal values of the parameters of PLDA+ are highly related
to the distributed environment, including network bandwidth and processor speed.

3.5.2 Complexity. Table II summarizes the complexity ofPd processors andPw pro-
cessors in both time and space. For comparison, we also list the complexity of LDA and
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Table II: Algorithm complexity. In this table,I is the iteration number of Gibbs sampling andc is a constant that
converts bandwidth to flops.

Method Time Complexity Space Complexity

Preprocessing Gibbs sampling

LDA - INK K(D +W ) +N

PLDA D
|P |

I
(

NK
P

+ cKW logP
) (N+KD)

P
+KW

PLDA+,Pd
D

|Pd|
+ cW logW + WK

|Pw|
INK
|Pd|

(N+KD)
|Pd|

PLDA+,Pw - - KW
|Pw|

PLDA in this table. We assumeP = |Pw| + |Pd| when comparing PLDA+ with PLDA.
In this table,I indicates the iteration number for Gibbs sampling, andc is a constant that
converts bandwidth to flops.

The preprocessing of LDA distributes documents toP processors with time complex-
ity D/|P |. Compared to PLDA, the preprocessing of PLDA+ requires three additional
operations including (1) building an inverted document filefor all documents on eachPd

processor with timeO(D/|Pd|), (2) bundling words with timeO(W logW ) for fast sort-
ing words according to their frequencies, and (3) sending topic counts fromPd processors
to Pw processors to initialize the word-topic matrix onPw with time O(WK/|Pw|). In
practice LDA is set to run with hundreds of iterations, and thus the preprocessing time for
PLDA+ is insignificant compared to the training time.

Finally, let us consider the speedup efficiency of PLDA+. Supposeγ = |Pw|/|Pd| for
PLDA+, without considering preprocessing, the ideal achievable speedup is:

speedup efficiency=
S/P

S/|Pd|
=

|Pd|

P
=

1

1 + γ
, (7)

whereS denotes the running time for LDA on a single processor,S/P is the ideal time cost
usingP processors, andS/|Pd| is the ideal time achieved by PLDA+ with communication
completely masked by Gibbs sampling.

4. EXPERIMENTAL RESULTS

We compared the performance of PLDA+ with PLDA (AD-LDA based) through empirical
study. Our study focused on comparing both training qualityand scalability. Since the
speedups of AS-LDA are just “competitive” to those reportedfor AD-LDA as shown in
[Asuncion et al. 2008; 2010], we chose not to compare with AS-LDA.

4.1 Datasets and Experiment Environment

We used the three datasets shown in Table III. The NIPS dataset consists of scientific
articles from NIPS conferences. The NIPS dataset is relatively small, and we used it to
investigate the influence of missed deadlines on training quality. Two Wikipedia datasets
were collected from English Wikipedia articles using the March 2008 snapshot fromen.
wikipedia.org. By setting the size of the vocabulary to20, 000 and 200, 000, re-
spectively, the two Wikipedia datasets are named Wiki-20T and Wiki-200T. Compared to
Wiki-20T, more infrequent words are added in vocabulary in Wiki-200T. However, even
for those words ranked around200, 000, they have occurred in more than24 articles in
Wikipedia, which is sufficient to learn and infer their topics using LDA. These two large
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Table III: Detailed information of data sets.

NIPS Wiki-20T Wiki-200T
Dtrain 1,540 2,122,618 2,122,618
W 11,909 20,000 200,000
N 1,260,732 447,004,756 486,904,674
Dtest 200 - -

datasets were used for testing the scalability of PLDA+. In experiments, we implemented
PLDA+ using a synchronous remote procedure call (RPC) mechanism. The experiments
were run on a distributed computing environment with2, 048 processors, each with a2GHz
CPU,3GB of memory, and a disk allocation of100GB.

4.2 Impact of Missed Deadlines

Similar to [Newman et al. 2007], we usetest set perplexity to measure the quality of LDA
models learned by various distributed methods of LDA. Perplexity is a common way of
evaluating language models in natural language processing, computed as:

Perp(xtest) = exp
(

−
1

N test
log p(xtest)

)

, (8)

wherextest denotes the test set, andN test is the size of the test set. A lower perplexity
value indicates a better quality. For every test document inthe test set, we randomly
designated half the words for fold-in, and the remaining words were used for testing. The
document mixtureθj was learned using the fold-in part, and the log probability of the
test words was computed using this mixture. This arrangement ensures that the test words
were not used in estimating model parameters. The perplexity computation follows the
standard method in [Griffiths and Steyvers 2004], which averages over multiple chains
when making predictions using LDA models learned by Gibbs sampling. Using perplexity
on the NIPS dataset, we find the quality and convergence rate of PLDA+ are comparable
to single-processor LDA and PLDA. Since the conclusion is straightforward and similar
to [Newman et al. 2007], we do not present the evaluation results on perplexity in detail.

As described in Section 3.4.3, PLDA+ discards a request whenits deadline is missed.
Here we investigate the impact of missed deadlines on training quality using the NIPS
dataset. We definemissing ratio δ as the average number of missed requests divided by
the total number of requests, which ranges[0.0, 1.0). By randomly droppingδ requests
in each iteration, we simulated discarding different amounts of requests in each iteration.
We compared the quality of learned topic models under differentδ values. In experiments
we setP = 50. Fig. 7 shows the perplexities with differentδ values versus the number
of sampling iterations whenK = 10. When the missing ratio is less than60%, the per-
plexities remain reasonable. At interaction400, the perplexities ofδ’s between20% and
60% are about the same, whereas no deadline misses can achieve a2% better perplexity.
Qualitatively, a2% perplexity drop does not show any discernible degradation in training
results. Fig. 8 shows the perplexities of converged topic models with various numbers of
topics versus differentδ settings, at the end of iteration400. A largerK setting suffers
from more severe perplexity degradation. Nevertheless,δ = 60% seems to be a limiting
threshold that PLDA+ can endure. In reality, our experiments indicate that the missing
ratio is typically lower than1%, far from the limiting threshold. Though the missing ra-
tio depends highly on the workload and the computation environment, the result of this
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experiment is encouraging that PLDA+ can operate well even whenδ is high.

4.3 Speedups and Scalability

The primary motivation for developing distributed algorithms for LDA is to achieve a
good speedup. In this section, we report the speedup of PLDA+compared to PLDA.
We used Wiki-20T and Wiki-200T for speedup experiments. By setting the number of
topicsK = 1, 000, we ran PLDA+ and PLDA on Wiki-20T usingP = 64, 128, 256, 512
and1, 024 processors, and on Wiki-200T usingP = 64, 128, 256, 512, 1, 024 and2, 048
processors. Note that for PLDA+,P = Pw+Pd, and the ratio of|Pw|/|Pd| was empirically
set toγ = 0.6 according to the unit sampling time and transfer time. The number of threads
in a thread pool was set asR = 50, which was determined based on the experiment results.
As analyzed in Section 3.5.2, the ideal speedup efficiency ofPLDA+ is 1

1+γ
= 0.625.

Fig. 9 compares speedup performance on Wiki-20T. The speedup was computed relative
to the time per iteration when usingP = 64 processors, because it was impossible to run
the algorithms on a smaller number of processors due to memory limitations. We assumed
the speedup onP = 64 to be64, and then extrapolated on that basis. From the figure, we
observe that whenP increases, PLDA+ simply achieves much better speedup than PLDA,
thanks to the much reduced communication bottleneck of PLDA+. Fig. 10 compares the
ratio of communication time over computation time on Wiki-20T. WhenP = 1, 024, the
communication time of PLDA is13.38 seconds, which is about the same as its computation
time, much longer than that of PLDA+’s3.68 seconds.

From the results, we conclude that: (1) When the number of processors grows large
enough (e.g.,P = 512), PLDA+ begins to achieve better speedup than PLDA; (2) In fact,
if we take the waiting time for synchronization in PLDA into consideration, the speedup
of PLDA could have been even worse. For example, in a busy distributed computing
environment, whenP = 128, PLDA may take about70 seconds for communication in
which only about10 seconds are used for transmitting word-topic matrices and most of the
time is used to wait for computation to complete.

On the larger Wiki-200T dataset, as shown in Fig. 11, the speedup of PLDA starts to
flatten out atP = 512, whereas PLDA+ continues to gain in speed1. For this dataset,

1For PLDA+, the parameter of pre-fetch number and thread pool size was set toF = 100 andR = 50. With
W = 200, 000 andK = 1, 000, the matrix is1.6GBytes, which is large for communication.
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Fig. 9: Parallel speedup results for64 to 1, 024 pro-
cessors on Wiki-20T.
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Fig. 11: Parallel speedup results for64 to 2, 048 pro-
cessors on Wiki-200T.
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Fig. 12: Communication and sampling time for64 to
2, 048 processors on Wiki-200T.

we also list the sampling and communication time ratio of PLDA and PLDA+ in Fig. 12.
PLDA+ keeps the communication time to consistently low values fromP = 64 to P =
2, 048. WhenP = 2, 048, PLDA+ took only about20 minutes to finish100 iterations
while PLDA took about160 minutes. Though eventually Amdahl’s Law would kick in to
cap speedup, it is evident that the reduced overhead of PLDA+permits it to achieve much
better speedup for training on large-scale datasets using more processors.

The above comparison did not take preprocessing into consideration because the prepro-
cessing time of PLDA+ is insignificant compared to the training time as analyzed in Sec-
tion 3.5.2. For example, the preprocessing time for the experiment setting ofP = 2, 048
on Wiki-200T is35 seconds. For training, hundreds of iterations are required, with each
iteration taking about13 seconds.

5. CONCLUSION

In this paper, we presented PLDA+, which employs data placement, pipeline process-
ing, word bundling, and priority-based scheduling strategies to substantially reduce inter-
computer communication time. Extensive experiments on large-scale datasets demon-
strated that PLDA+ can achieve much better speedup than previous attempts on a dis-
tributed environment.
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