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Previous methods of distributed Gibbs sampling for LDA run into either memory or communi-
cation bottleneck. To improve scalability, we propose four strategies: data placement, pipeline
processing, word bundling, and priority-based scheduling. Experiments show that our strategies
significantly reduce the unparallelizable communication bottleneck and achieve good load balanc-
ing, and hence improve scalability of LDA.
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1. INTRODUCTION

Latent Dirichlet Allocation (LDA) was first proposed by Bléilg and Jordan to model
documents [Blei et al. 2003]. Each document is modeled ascaursiof K latent topics,
where each topid, is a multinomial distributiorp,, over al¥-word vocabulary. For any
documentl;, its topic mixturef; is a probability distribution drawn from a Dirichlet prior
with parameterv. For eachi*" word z;; in d;, a topicz;; = k is drawn fromé;, andz;;

is drawn frome,,. The generative process for LDA is thus given by

0; ~ Dir(a), ¢y, ~ Dir(B),zij =k ~ 0,15 ~ ¢y, 1)

where Dir(x) denotes the Dirichlet distribution. The graphical model DA is illus-
trated in Fig. 1, where the observed variables, i.e., woergsnd hyper parametersand
3, are shaded.

Using Gibbs sampling to learn LDA, the computation compieis K multiplied by

Authors’ address: Zhiyuan Liu, Yuzhou Zhang and Edward YaiZ)) Google China, e-mail: Izy.thu@gmail.com,
yuzhou.zh@gmail.com, edchang@google.com. Maosong Suntrepd of Computer Science and Technol-
ogy, Tsinghua University, e-mail: sms@tsinghua.edu.cnym Liu and Yuzhou Zhang are Ph.D. students in
the Department of Computer Science and Technology, Tsinghueetsity. This work was done during Liu and
Zhang's research internships in Google China.

Permission to make digital/hard copy of all or part of this matewithout fee for personal or classroom use
provided that the copies are not made or distributed for pppibmmercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appead, agtice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on seryversto redistribute to lists requires prior specific
permission and/or a fee.

© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 0



@7

@

K

J
D

Fig. 1: The graphical model for LDA.

the total number of word occurrences in the training corpBsior work has explored
two main parallelization approaches for speeding up LDApadallelizing on loosely-
coupled distributed computers, and 2) parallelizing ohttigcoupled multi-core CPUs or
GPUs (Graphics Processing Units). Representative loaseipled distributed algorithms
are Dirichlet Compound Multinomial LDA (DCM-LDA) [Mimno ash McCallum 2007],
Approximate Distributed LDA (AD-LDA) [Newman et al. 20074nd Asynchronous Dis-
tributed LDA (AS-LDA) [Asuncion et al. 2008], which perfor@ibbs sampling on com-
puters that do not share memory. This distributed approaah suffer from high inter-
computer communication cost, which limits achievable dpge The tightly-coupled ap-
proach uses multi-core CPUs or GPUs with shared memory, @hg.work of Yan, et
al. [2009]). Such a shared-memory approach reduces inbeeps communication time.
However, once the processors and memory have been confitfueeatchitecture is inflex-
ible when faced with changes in computation demands, andebé to schedule simulta-
neous tasks with mixed resource requirements. (We diseleted work in greater detalil
in Section 2.)

In this work, we improve the scalability of the distributegpaoach by reducing inter-
computer communication time. Our algorithm, which we narh®#&+, employs four
inter-dependent strategies:

(1) Dataplacement. Data placement aims to separate CPU-bound tasks and cdoatiomn-
bound tasks onto two sets of processors. Data placementesnab to employ a
pipeline scheme (discussed next), to mask communicatia@oimputation.

(2) Pipeline processing. To ensure that a CPU-bound processor is not blocked by com-

munication, PLDA+ conducts Gibbs sampling foward bundle while performing
inter-computer communication on the background. SuppabbsZEampling is per-
formed on the words ‘foo’ and ‘bar’. PLDA+ fetches the metad@r the word ‘bar’
while performing Gibbs sampling on the word ‘foo’. The conmuation time for
fetching the metadata of ‘bar’ is masked by the computaiioe for sampling ‘foo’.
(3) Word bundling. In order to ensure that communication time can be effdgtivaisked,
the CPU time must be long enough. Revisiting the example wipfiag ‘foo’ and
‘bar’, the CPU time for sampling the word ‘foo’ should be l@rghan the commu-
nication time for the word ‘bar’ in order to mask the commuation time. Suppose
we performed Gibbs sampling according to the order of wonddacuments, each
Gibbs sampling time unit would be too short to mask the reglitommunication
time. Since LDA treats a document as a bag of words and gntgabres word or-
der, we can flexibly process words on a processor in any orghow considering
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Table I: Symbols associated with LDA used in this paper.

D Number of documents.

K Number of topics.

w Vocabulary size.

N Number of words in the corpus.

Tij Thei" word ind; document.

Zi5 Topic assignment for word; ;.

Ch;j Number of topick assigned tal; document.
Cuk Number of wordw assigned to topi&.

Ch Number of topick in corpus.

Cdoc Document-topic count matrix.

cword | \\ord-topic count matrix.
Ctoric | Topic count matrix.

Ch Probability of topics given document;.
by Probability of words given topig.

«a Dirichlet prior.

B8 Dirichlet prior.

P Number of processors.

| P | Number ofP,, processors.

| Pgl Number of P; processors.

P Theit" processor.

document boundaries. Word bundling combines words int/elaomputation units.

(4) Priority-based scheduling. Data placement andword bundling are static allocation
strategies for improving pipeline performance. Howevan time factors would al-
most always affect the effectiveness of a static allocagireme. Therefore, PLDA+
employs a priority-based scheduling scheme to smooth odtime bottlenecks.

The above four strategies must work together to improvedigee-or instance, without
word bundling, pipeline processing is futile because ofrsbomputation units. With-
out distributing the metadata of word bundles, communicakiottlenecks at theaster
processor could cap scalability. By lengthening the comupart units via word bundling,
while shortening communication units via data placemeetcan achieve more effective
pipeline processing. Finally, a priority-based schedhbidps smooth out unexpected run-
time imbalances in workload.

The rest of the paper is organized as follows: We first prekBr# and related dis-
tributed algorithms in Section 2. In Section 2.3 we pres&mA&, an MPI implementation
of Approximate Distributed LDA (AD-LDA). In Section 3 we alyae the bottleneck of
PLDA and depict PLDA+. Section 4 demonstrates that the sgeefl PLDA+ on large-
scale document collections significantly outperforms PLBAction 5 offers our conclud-
ing remarks. For the convenience of readers, we summagzeattations used in this paper
in Table I.

2. LDA OVERVIEW

Similar to most previous work [Griffiths and Steyvers 2004¢ use symmetric Dirichlet
priors in LDA for simplicity. Given the observed words the task of inference for LDA is
to compute the posterior distribution of the latent topisigsmentsz, the topic mixtures
of document®, and the topicsb.
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2.1 LDA Learning

Griffiths and Steyvers [2004] proposed using Gibbs samplandg/larkov-chain Monte
Carlo (MCMC) method, to perform inference for LDA. By assmgi Dirichlet prior8 on
@, ¢ can be integrated (hence removed from the equation) usinBitichlet-multinomial
conjugacy. MCMC is widely used as an inference method fanfatopic models, e.g.,
Author-Topic Model [Rosen-Zvi et al. 2010], Pachinko Alaion [Li and McCallum
2006], and Special Words with Background Model [Chemudtaw al. 2007]. More-
over, since the memory requirement of VEM is not nearly atabba as that of MCMC
[Newman et al. 2009], most existing distributed methodsLfdA use Gibbs sampling
for inference, e.g., DCM-LDA, AD-LDA, and AS-LDA. In this peer we focus on Gibbs
sampling for approximate inference. In Gibbs samplings itsual to integrate out the mix-
turesf and topicsp and just sample the latent variabkesThe process is callembllapsing.
When performing Gibbs sampling for LDA, we maintain two meds: a word-topic count
matrix C**°"¢ in which each element,,;, is the number of wordy assigned to topié,
and a document-topic count mat(ix'°© in which each elemert; is the number of topic
k assigned to documenrt. Moreover, we maintain a topic count vectgf°?*“ in which
each element’;; is the number of topié assignments in document collection. Given the
current state of all but one variabig;, the conditional probability of;; is

. . coH + B .
zii = k|27, 27 2 = w, o, 8 o<”i",k7(0ﬁ-”+a), 2
p( J | J ) C;’L] + WB kj ( )
where—ij means that the corresponding word is excluded in the colviteneverz;; is
assigned with a new topic drawn from Eq. (2)°°"¢, C4°¢ andC*°Pi¢ are updated. After
enough sampling iterations to burn in the Markov chéliand¢ are estimated.

2.2 LDA Performance Enhancement

Various approaches have been explored for speeding up LBkevEnt parallel methods
for LDA include:

—Mimno and McCallum [2007] proposed Dirichlet Compound Nhdimial LDA (DCM-
LDA), where the datasets are distributed to processorsh<z#ampling is performed
on each processor independently without any communicéiéween processors, and
finally a global clustering of the topics is performed.

—Newman, et al. [2007] proposed Approximate Distributed L{2®-LDA), where each
processor performs a local Gibbs sampling iteration foldvay a global update using
a reduce-scatter operation. Since the Gibbs sampling dm @acessor is performed
with the local word-topic matrix, which is only updated a¢ tbnd of each iteration, this
method is callecpproximate distributed LDA.

—1In [Asuncion et al. 2008], a purely asynchronous distridut®A was proposed, where
no global synchronization step like in [Newman et al. 208 #giquired. Each processor
performs a local Gibbs sampling step followed by a step ofroamicating with other
random processors. In this paper we label this method as AS-LDA.

—Yan, et al. [2009] proposed parallel algorithms of Gibbs glimy and VEM for LDA
on GPUs. A GPU has massively built-in parallel processotk shiared memory.

Besides these parallelization techniques, the followipginsizations can reduce LDA
model learning computation cost:
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—Gomes, et al. [2008] presented an enhancement of the VEMiitlgousing a bounded
amount of memory.

—Porteous, et al. [2008] proposed a method to acceleratectm@wtation of Eq. (2).
The acceleration is achieved by no approximations but usiagroperty that the topic
probability vectors for document;, 6, are sparse in most cases.

2.3 PLDA: An MPI Implementation of AD-LDA

We previously implemented PLDA [Wang et al. 2009], an MPI lempentation of AD-
LDA [Newman et al. 2007]. PLDA has been successfully appiredeal-world applica-
tions such as communication recommendation [Chen et a@]2@(ID-LDA distributes D
training documents oveP processors, wittD,, = D/P documents on each processor.
AD-LDA partitions document content = {x4}7_, into {x|;,...,xp} and the corre-
sponding topic assignments = {z4}2_, into {z1,..., zp}, wherex), andz, exist
only on processop. The document-topic count matrig;4°c, is likewise distributed and
we represent the processor-specific document-topic coatrtaas afl‘i;’c. Each proces-

sor maintains its own copy of the word-topic count matix’°¢. Moreover, we use

Cﬁ;‘”'d to temporarily store word-topic counts accumulated frogaladocuments’ topic

assignments on each processor. In each Gibbs samplinidtersach processgrupdates
z|, by sampling every;;,, € z|, from the approximate posterior distribution:

PR Cﬁ;'cj_yﬁ iy

p(zmp =k ‘ z ij;p ”,xijlp = w) X m (Ck;\jp + Oé) 5 (3)

and update(é?lfﬁj’C andOlf;"“i according to the new topic assignments. After each itematio
each processor recomputes word-topic counts for its Iamahmentfﬁjord and uses an

AllReduce operation to reduce and broadcast the @&#/< to all processors. One can
refer to [Wang et al. 2009] for the MPI implementation detaif AD-LDA.

We have also implemented AD-LDA on MapReduce [Dean and Gh&tn2004; Chu
et al. 2006] as reported in [Wang et al. 2009]. Using MapReduatany operations can
be carried out by combining three basic phases: mappindflisguand reducing. We
used MapReduce to implemeAtiReduce. However, before and after each iteration of
the MapReduce-based AD-LDA, a disk IO is required to fetcth apdate the word-topic
matrix at themaster processor. In addition, local data must also be written digks. The
benefit of forcing 10s between iterations is tolerating fauHowever, using MPI, a fault
recovery scheme can be more efficiently implemented vial@gyafter the completion of
each iteration. The primary reason for conducing IOs is bsedMapReduce cannot ensure
two consecutive iterations of sampling the same set of deitegbscheduled on the same
processor. Thus, documents and metadata (document-topits) must be fetched into
memory at the beginning of each iteration even in the absehadault. Certainly, these
shortcomings of MapReduce can be improved. But MPI seemée @ more attractive
choice at the time when this research was conducted.

3. PLDA+: AN ENHANCED DISTRIBUTED LDA

To further speed up LDA, the PLDA+ algorithm employs foureintiependent strategies
to reduce inter-computer communication cost: data plaognpéeline processing, word
bundling, and priority-based scheduling.
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Fig. 2: The assignments of documents and word-topic countxfatrPLDA and PLDA+.
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Fig. 3: The spread patterns of the updated topic distributioa word from one processor for PLDA, AS-LDA
and PLDA+.

3.1 Bottlenecks for PLDA

As presented in the previous section, in PLOAdocuments are distributed overpro-
cessors with approximatellp /P documents on each processor. This is shown with a
D/ P-by-W matrix in Fig. 2(A), wherelV indicates the vocabulary of document collec-
tion. The word-topic count matrix is also distributed, withch processor keeping a local
copy, which is thdV-by-K matrix in Fig. 2(A).

In PLDA, after each iteration of Gibbs sampling, local waegic counts on each pro-
cessor are globally synchronized. This synchronizatiocgss is expensive partly because
a large amount of data is sent and partly because the syrization starts only when the
slowest processor has completed its work. To avoid unnapedglays, AS-LDA [Asun-
cion et al. 2008] does not perform global synchronizatike PLDA. In AS-LDA a proces-
sor only synchronizes word-topic counts with another fiatsprocessor. However, since
word-topic counts can be outdated, the sampling procestakara larger number of itera-
tions than that PLDA does to converge. Fig. 3(A) and Fig. 3{B3trate the spread patterns
of the updated topic distribution for a word from one process the others for PLDA and
AS-LDA. PLDA has to synchronize all word updates after a Gilbbs sampling iteration,
whereas AS-LDA performs updates only with a small subsetrofgssors. The memory
requirements for both PLDA and AS-LDA are ®{1), since the whole word-topic matrix
is maintained on all processors.

Although they apply different strategies for model combio@ existing distributed
methods share two characteristics:

—The methods have to maintain all word-topic counts in menfimrgach processor.
—The methods have to send and receive the whole word-topitxnbatween processors
for updates.

For the former characteristic, suppose we want to estimatenéth W words andK
topics from a large-scale dataset. When eitiéror K is large to a certain extent, the
memory requirement will exceed that available on a typicatpssor. For the latter char-
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acteristic, the communication bottleneck caps the pakfui speeding up the algorithm.
A study of high performance computing [Graham et al. 200%wshthat floating-point
instructions historically improve @&9% per year, but inter-processor bandwidth improves
26% per year, and inter-processor latency reduces o5fly per year. The communication
bottleneck will only exacerbate over additional years.

3.2 Strategies of PLDA+

Let us firstintroduce pipeline-based Gibbs sampling. Thelpie technique has been used
in many applications to enhance throughput, such as theugti&in pipeline in modern
CPUs [Shen and Lipasti 2005] and in graphics processorsijBl991]. Although pipeline
does not decrease the time for a job to be processed, it caieeffy improve through-
put by overlapping communication with computation. Figlidstrates the pipeline-based
Gibbs sampling for four wordsy;, wo, ws andwy. Fig. 4(A) demonstrates the case when
ts > ty+t,, and Fig. 4(B) the case when < ¢y +t,, wheret,, t andt, denote the time
for Gibbs sampling, fetching the topic distribution, anddapng the topic distribution,
respectively.

In Fig. 4(A), PLDA+ begins by fetching the topic distributidor w,. Then it begins
Gibbs sampling oy, and at the same time, it fetches the topic distributionder After
it has finished Gibbs sampling far;, PLDA+ updates the topic distribution far, on P,
processors. Whery > t¢+t,,, PLDA+ can begin Gibbs sampling an immediately after
it has completed sampling far, . The total ideal time for PLDA+ to proce$g words will
beWt, +t; + t,. Fig. 4(B) shows a suboptimal scenario where the commuaitétne
cannot be entirely masked. PLDA+ is not able to begin Giblnspsiag for ws until wq
has been updated ang, fetched. The example shows that in order to successfullikmas
communication, we must schedule tasks to ensure as muclssibleahat, > ¢t + t,,.

To make the pipeline strategy effective or > ¢, + t,,, PLDA+ divides processors
into two types: one maintains documents and the documeitt-tount matrix to perform
Gibbs sampling £; processors), while the other stores and maintains the veqid-count
matrix (P,, processors). The structure is shown in Fig. 2(B). Durindnétecation of Gibbs
sampling, aP; processor assigns a new topic to a word in a typical thregegieocess:

(1) Fetch the word’s topic distribution fromA,, processor.
(2) Perform Gibbs sampling and assign a new topic to the word.
(3) Update theP,, processors maintaining the word.

The corresponding spread pattern for PLDA+ is illustratedig. 3(C), which avoids both
the global synchronization of PLDA and the large number efations required by AS-
LDA for convergence.

One key property that PLDA+ takes advantage of is that eashd-of Gibbs sampling
can be performed in any word order. Since LDA models a doctiaeea bag of words and
ignores word order, we can perform Gibbs sampling accorttirany word order as if we
reordered words in bags. When a word that occurs multiplestiméhe documents of B,
processor, all instances of that word can be processecdhtargétloreover, for words that
occur infrequently, we bundle them with words that occurerfoequently to ensure that
is sufficiently long. In fact, if we know +¢,,, we can decide how many word-occurrences
to process in each Gibbs sampling batch to ensure that(t; + ¢,,) is minimized.

To perform Gibbs sampling word by word, PLDA+ builds word éxés to documents
on eachP; processor. We then organize words imiecular queue as shown in Fig. 5.
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Fig. 4. Pipeline-based Gibbs sampling in PLDA+. (A): > t; + tu. (B): ts < ty + ty. In this figure,F
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Fig. 5: Vocabulary circular queue in PLDA+.

Gibbs sampling is performed by going around the circularugueTo avoid concurrent
access to the same words, we schedule different processbegjin at different positions
of the queue. For example, Fig. 5 shows f@ayrprocessorsPyg, Pi1, Pyo and Py3 start
their first word fromwg, ws, wy andwg, respectively. To ensure that this scheduling
algorithm works, PLDA+ must also distribute the word-topiatrix in a circular fashion
on P, processors. This static allocation scheme enjoys two benéfirst, the workload
amongP,, processors can be relatively balanced. Second, avoidingPywnodes from
concurrently updating the same word can roughly maintaialszability of the word-topic
matrix on P,, nodes. Please note that the distributed scheme of PLDA+e&nstronger
serializability than PLDA becausefd; node of PLDA+ can obtain the word-topic matrix
updates of otheP; nodes in the same Gibbs sampling iteration. The detailecrif¢ion

of word placement are presented in Section 3.3.1.

Although word placement can be performed in an optimal welyeduling must deal
with run-time dynamics. First, some processors may rurefabin others, and this may
build up bottlenecks at some of thi¢, processors. Second, when multiple requests are
pending, the scheduler must be able to set priorities baseetjuest deadlines. The details
of PLDA+’s priority-based scheduling scheme are descriheé®ection 3.4.3.

3.3 Algorithm for P, Processors

The task of theP,, processors is to process, fetch and update queriespopnocessors.
PLDA+ distributes the word-topic matrix t&,, processors according to the words con-
tained in the matrix. After placement, ea&h, processor keeps approximatély/|P,,|
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words with their topic distributions.

3.3.1 Word Placement over P,, Processors. The goal of word placement is to ensure
spatial load balancing. We would like to make sure that all processeceive about the
same number of requests in a round of Gibbs sampling.

For bookkeeping, we maintain two data structures. Firstyyseen; to record the number
of P; processors on which a wotd; resides, which is also the weight of the word. For

words, we maintain a vectett = (m4,..., my ). The second data structure keeps track
of eachP,, processor’s workload, or the sum of weights of all words cat firocessor.
The workload vector is denoted &s- (I4,...,[|p,))-

A simple placement method is to place words independentlyusriformly at random
on P,, processors. This method is referred tdRasdom Word Placement. Unfortunately,
this placement method may cause frequent load imbalanodsal@nce workload, we use
the Weighted Round-Robin method for word placement. We first sort wordslescending
order by their weights. We then pick the word with the largesight from the vocabulary
(e.g.,w;), place it on theP,, processor (e.gpw) with the least workload, and then update
the workload ofpw. This placement process is repeated until all words have pleeed.
Weighted Round-Robin has been empirically shown to achialanced load with high
probability [Berenbrink et al. 2008].

3.3.2 Processing Requests from P, Processors. After placing words with their topic
distributions onP,, processors, thé, processors begin to process requests fromihe
processors. AP, processopw first builds its associated word-topic count matﬁ?gf[d
by receiving initial word-topic counts from alP; processors. Then thg, processor
pw begins to process requests frdi processors. In PLDA+ we define three types of
requests:

—fetch(w;, pw,pd): a request for fetching the topic distribution of a wardby a P,
processopd. For each request, thfé, processopw returns the topic distributioﬁ‘g“;’g
of the wordw, which will be used a&”,¥/ in Eq. (2) for Gibbs sampling.

—update(w, @, pw): a request for updating the topic distribution of a wardising the
update information onpd. The P,, processor updates the topic distribution of the word
w using.

—fetch(pw, pd): a request for fetching the overall topic counts oR,aprocessopw by
a P, processopd. The P,, Processopw sums up the topic distributions for all words

onpw as a vectocmm. Once aIICij’ffc are fetched from eacR,, processor byd,

they are summed up and used@g” in Eq. (2) for Gibbs sampling.

EachP, processor handles all requests related to the words it fnasble for main-
taining. To ensure that requests are served in a timely nmamgeemployed a priority
scheme sorted by request deadlines. According to its looad wrocessing order, By
processor needs communication completion for its fetclugsty at various time units.

When theP,; processor sends its requestdtp processors, deadlines are set in the request
header. AP,, processor serves waiting requests based on their deadlines

3.4 Algorithm for P; Processors
The algorithm forP,; processors executes according to the following steps:
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(1) Atthe beginning, it allocates documents of&iprocessors and then builds an inverted
index for documents on eadPy processor.

(2) It groups the words in the vocabulary irftondles for performing Gibbs sampling and
sending requests.

(3) It schedules word bundles to minimize communicatiorilboécks.

(4) Finally, it performs pipeline-based Gibbs samplingatevely until the termination
condition is met.

In the following, we present the four steps in detail.

3.4.1 Document Allocation and Building an Inverted Index. Before performing Gibbs
sampling, we first have to distribufeé documents td®; processors. The goal of document
allocation is to achieve good CPU load balance amBpgrocessors. PLDA may suffer
from imbalanced load since it has a global synchronizatiasp at the end of each Gibbs
sampling iteration, which may force fast processors to veaithe slowest processor. In
contrast, Gibbs sampling in PLDA+ is performed with no syoclization requirement. In
other words, a fast processor can start its next round of kagnwithout having to wait
for a slow processor. However, we also do not want some psocgs$o be substantially
slow and miss too many cycles of Gibbs sampling. This willtes the similar short-
coming that AS-LDA suffers — taking a larger number of itéyat to converge. Thus,
we would like to allocate documents to processors in a bathfecshion. This is achieved
by employingRandom Document Allocation. EachP, processor gets approximal¥/ | P,|
documents. The time complexity of this allocation ste@{D).

After documents have been distributed, we build an inveirtiddx for the documents
of each P; processor. Using this inverted index, each tim&;aprocessor fetches the
topic distribution of a worduw, it performs Gibbs sampling for all instanceswofon that
processor. After sampling, the processor sends back thetegbdopic distribution to the
corresponding?,, processor. The clear benefit is that for multiple occurrerafea word
on a processor, we only need to perform two communicatioms fetch and one update,
substantially reducing communication cost. The indexcstme for each word is:

w—>{(dl,zl),(dhzz),(dg,zl)...}7 (4)

in which, w occurs in document; for 2 times and there argentries. In implementation,
to save memory, we will record all occurrences:oin d; as one entryids, {21, 22}).

3.4.2 Wordbundle. Bundling words is to prevent the duration of Gibbs sampliingis
being too short to mask communication. Use an extreme exaraplord takes place only
once on a processor. Performing Gibbs sampling on that vedeesta much shorter time
than the time required to fetch and update the topic didiohwof that word. The remedy
is intuitive: combining a few words into a bundle so that tleencnunication time can be
masked by the longer duration of Gibbs sampling time. Thekthiere is that we have to
make sure the targdt, processor is the same for all words in a bundle so that ea@h tim
only one communication 10 is required for fetching topictdisitions for all words in a
bundle.

For a P; processor, we start bundling words according to their tafge processors.
For all words with the same targét, processor, we first sort them in descending order
of occurrence times and build a word list. We then iterayiy@tk a high frequency word
from the head of the list and several low frequency words filoertail of the list and group
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them into a word bundle. After building word bundles, eaahetive will send a request to
fetch topic distributions for all words in a bundle. For exa&) when learning topics from
NIPS dataset consisting of 12-year NIPS papers, we cormflamrere, collapse, compiler,
conjunctive, ...} as a bundle, in whichurveis a high frequency word and the rest are low
frequency words in this dataset.

3.4.3 Building the Request Scheduler. It is crucial to design an effective scheduler
to determine the next word bundle to send requests for taptdliltions during Gibbs
sampling. We employ a simple pseudo-random schedulingrsehe

In this scheme, words in the vocabulary are stored in a @raglieue. During Gibbs
sampling, words are selected from this queue in a clockwismonterclockwise order.
Each P, processor enters this circular queue with a different bffiseavoid concurrent
access to the sam@, processor. The starting point of eaéh process at each Gibbs
sampling iteration is different. This randomness avoidmfog the same bottlenecks from
one iteration to another. Since circular scheduling is icssgheduling scheme, a bottle-
neck can still be formed at soni®, processors when multiple requests arrive at the same
time. Consequently, some; processors may need to wait for a response before Gibbs
sampling can start. We remedy this shortcoming by regiggexideadline for each request,
as described in Section 3.3.2. Requests &t), grocessor are processed according to their
deadlines. A request will be discarded if its deadline hanbeissed. Due to the stochas-
tic nature of Gibbs sampling, occasionally missing a rouhibbs sampling does not
affect overall performance. Our pseudo-random schedplitigy ensures the probability
of same words being skipped repeatedly is negligibly low.

3.4.4 Pipeline-based Gibbs Sampling. Finally, we perform pipeline-based Gibbs sam-
pling. As shown in Eq. (2), to compute and assign a new topia fgiven worde;; = w in
a documentl;, we have to obtai€’x*", C*oPic andC/°c. The topic distribution of doc-
umentd; is maintained by &, processor. While the up-to-date topic distributiofjo <
is maintained by &, processor, the global topic couat°Pic should be collected over
all P, processors. Therefore, before assigning a new topic forrd won a document, a
P, processor has to requeser? andC“pic from P, processors. After fetchingwo ¢
andCtoric the P; processor computes and assigns new topics for occurrehtresword
w. Then theP; processor returns the updated topic distribution for thedwo to the
responsibleP,, processor.

For a P; processomd, the pipeline scheme is performed according to the follgwin
steps:

(1) Fetch overall topic counts for Gibbs sampling.

(2) SelectF word bundles and put them in the thread pgoto fetch topic distributions
for the words in each bundle. Once a request is respondefd, bgrocessors, the
returned topic distributions are put in a waiting quéug;.

(3) For each word i), pick its topic distribution to perform Gibbs sampling.

(4) After Gibbs sampling, put the updated topic distribnian the thread poap to send
update requests t8,, processors.

(5) Select a new word bundle and put ittjm
(6) If the update condition is met, fetch new overall topiciots.
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Fig. 6: The communication scheme of PLDA+.

(7) If the termination condition is not met, go to Step (3) tarsGibbs sampling for other
words.

In Step (1) pd fetches the overall topic distributiod&rc. In this steppd just sends the
requestsetch(pw, pd) to eachP,, processor. The requests are returned Mpw’c, pw €

{0,...,|Py| — 1} from all P, processors. Processpd thus getsCtOPiC by summing
overall topic counts from each, processorg™?'c =3- C’lt:f;”.

Since the thread poap can send requests and process the returned results ineparall
in Step (2) it puts a number of requests to fetch topic distidms simultaneously in case
some requests are delayed. Since the requests are sensatrteée¢ime, they are assigned
with the same deadline. Once a response is returned, ittaftl §ibbs sampling immedi-
ately. Here, we mention the number of pre-fetch requesfs.as PLDA+, F' should be
properly set to make sure the waiting quelg; always has returned topic distributions
of words waiting for Gibbs sampling. If not, it will stop to wdor the incoming member
of @pq, Which is a part of the communication time cost of PLDA+. Tokedest use of
threads in the thread podt; should be larger than the number of threads in the pool.

It is expensive forP,, processors to process the request for overall topic cowuzuse
the operation has to access the topic distributions for eacti on eachP,, processor. For-
tunately, as indicated by the results of AD-LDA [Newman et28l09], topic assignments
in Gibbs sampling are not sensitive to the values of the diverzsic counts. We thus reduce
the frequency of fetching overall topic counts to improve #ificiency ofP,, processors.
Therefore, in Step (6), we do not fetch overall topic counégjiently. In experiments,
we will show that, by fetching new overall topic counts onfiea performing one pass of
Gibbs sampling for all words, PLDA+ can obtain the same leariguality as LDA and
PLDA.

The pipeline scheme is depicted in Fig. 6, where the procef&ahing C*°Pi is not
shown for simplicity.

3.4.5 Fault Tolerance. In PLDA+, we provide a fault-recovery solution similar to
PLDA. We perform checkpointing only fot|,,; on P; processors. This is because: (1)
on theP; side,z,,; can be reloaded from dataset, a(ﬁ@”d“ can be recovered froray,;;

(2) on theP,, side,C;,”g"d can also be recovered frogy,,. The recovery code is at the be-
ginning of PLDA+: if there is a checkpoint on the disk, loaditherwise perform random
initialization.
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3.5 Parameters and Complexity

In this section, we analyze parameters that may influencpdatfermance of PLDA+. We
also analyze the complexity of PLDA+ and compare it with PLDA

3.5.1 Parameters. Given the total number of processaps the first parameter is the
proportion of the number a?,, processors t&, processorsy = |P,,|/| P4|. The larger the
value of, the more the average time for Gibbs sampling®mprocessors will increase as
fewer processors are used to perform CPU-bound tasks. Aathe time, the average time
for communication will decrease since more processoresasy’,, to process requests.
We have to balance the number Bf, and P; processors to (1) minimize both compu-
tation and communication time, and (2) ensure that comnatioie time is short enough
to be masked by computation time. This parameter can bendieied once we know the
average time for Gibbs sampling and communication of thedvtopic matrix. Suppose
the total time for Gibbs sampling of the whole datasefjsthe communication time for
transferring the topic distributions of all words from ormegessor to another processor is
T;. For P, processors, the sampling time will B&/|P;|. Suppose we transfer word topic
distributions simultaneously t&,, processors, and thus transfer time willB¢'|P,,|. To
make sure the sampling process is able to overlap the fetewrid updating process, we
have to make sure

T 2T,

—_— > 7’.

[Pal = | Pul
Supposel; = Wt, wheret, is the average sampling time for all instances of a word, and
T, = Wty = Wt,, wheret; andt, is the average fetching and update time for a word,
we get

()

|Pw| Ef +{7L
— _ 6
A (6)

wherety, t, andt, can be obtained by performing PLDA+ on a small dataset andl the
empirically set an appropriatevalue. Under the computing environment for our experi-
ments, we empirically set = 0.6.

The second parameter is the number of threads in the thre@ld”pavhich caps the
number of parallel requests. Since the thread pool is uspret@ent sampling from being
blocked by busyP,, processorsR is determined by the network environmer.can be
empirically tuned during Gibbs sampling. That is, when thedtivg time for the prior
iteration is long, the thread pool size is increased.

The third parameter is the number of requdstor pre-fetching the topic distributions
before performing Gibbs sampling df; processors. This parameter dependspm@and
in experiments we sdt = 2R.

The last parameter is the maximum intervater,,,. for fetching the overall topic
counts from allP,, processors during Gibbs sampling Bf processors. This parameter
influences the quality of PLDA+. In experiments, we can aghleDA models with similar
quality to PLDA and LDA by settindnter,,q. = W.

It should be noted that the optimal values of the paramefd?&£ DA+ are highly related
to the distributed environment, including network bandwidnd processor speed.

v

3.5.2 Complexity. Table Il summarizes the complexity &f; processors an&,, pro-
cessors in both time and space. For comparison, we alstdistamplexity of LDA and
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Table II: Algorithm complexity. In this table] is the iteration number of Gibbs sampling anid a constant that
converts bandwidth to flops.

Method Time Complexity Space Complexity
Preprocessing Gibbs sampling
LDA - INK K(D+W)+N
PLDA & (MK 4 ckWlogP) | WHER) 4 kw
D WK INK (N+KD)
PLDA*.Fa | 1y +cWlog W + (5 TPl [Pl
PLDA+,P,, - - o

PLDA in this table. We assume = |P,,| + |P;| when comparing PLDA+ with PLDA.
In this table,l indicates the iteration number for Gibbs sampling, amsla constant that
converts bandwidth to flops.

The preprocessing of LDA distributes documents?t@rocessors with time complex-
ity D/|P|. Compared to PLDA, the preprocessing of PLDA+ requiresettadditional
operations including (1) building an inverted documentfiileall documents on eachy
processor with tim&(D/|Py]), (2) bundling words with timed (W log W) for fast sort-
ing words according to their frequencies, and (3) sendipgtoounts fromP,; processors
to P, processors to initialize the word-topic matrix é%, with time O(WK/|P,|). In
practice LDA is set to run with hundreds of iterations, angstthe preprocessing time for
PLDA+ is insignificant compared to the training time.

Finally, let us consider the speedup efficiency of PLDA+. gigey = |P,|/| Pl for
PLDA+, without considering preprocessing, the ideal achtide speedup is:

S/P Pl _ 1 (7)
S/\P; P 147
whereS denotes the running time for LDA on a single procesSg@g; is the ideal time cost
usingP processors, anfl/| P4 is the ideal time achieved by PLDA+ with communication
completely masked by Gibbs sampling.

speedup efficiency:

4. EXPERIMENTAL RESULTS

We compared the performance of PLDA+ with PLDA (AD-LDA bas#tough empirical
study. Our study focused on comparing both training qualitgd scalability. Since the
speedups of AS-LDA are just “competitive” to those report@dAD-LDA as shown in
[Asuncion et al. 2008; 2010], we chose not to compare withLAR\.

4.1 Datasets and Experiment Environment

We used the three datasets shown in Table lll. The NIPS datassists of scientific
articles from NIPS conferences. The NIPS dataset is relgtismall, and we used it to
investigate the influence of missed deadlines on trainiradityu Two Wikipedia datasets
were collected from English Wikipedia articles using thertte2008 snapshot fromn.

wi ki pedi a. org. By setting the size of the vocabulary 20,000 and 200, 000, re-
spectively, the two Wikipedia datasets are named Wiki-20d \&/iki-200T. Compared to
Wiki-20T, more infrequent words are added in vocabulary iiki¥200T. However, even
for those words ranked arour2d0, 000, they have occurred in more th&4 articles in
Wikipedia, which is sufficient to learn and infer their topiasing LDA. These two large
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Table III: Detailed information of data sets.

NIPS Wiki-20T Wiki-200T

Dirain 1,540 2,122,618 2,122,618
W 11,909 20,000 200,000
N 1,260,732 447,004,756 486,904,674
Diest 200 - -

datasets were used for testing the scalability of PLDA+.xjpegiments, we implemented
PLDA+ using a synchronous remote procedure call (RPC) nmésima The experiments
were run on a distributed computing environment With48 processors, each witle&Hz
CPU,3GB of memory, and a disk allocation ®60GB.

4.2 Impact of Missed Deadlines

Similar to [Newman et al. 2007], we usest set perplexity to measure the quality of LDA
models learned by various distributed methods of LDA. Redip} is a common way of
evaluating language models in natural language processingputed as:

1
T st log p(mteSt)) ) (8)

wherez'®s' denotes the test set, afd®st is the size of the test set. A lower perplexity
value indicates a better quality. For every test documenhéntest set, we randomly
designated half the words for fold-in, and the remainingdgorere used for testing. The
document mixtured; was learned using the fold-in part, and the log probabilityhe
test words was computed using this mixture. This arrangépregures that the test words
were not used in estimating model parameters. The perplegihputation follows the
standard method in [Griffiths and Steyvers 2004], which ages over multiple chains
when making predictions using LDA models learned by Giblmssang. Using perplexity
on the NIPS dataset, we find the quality and convergence f&e@A+ are comparable
to single-processor LDA and PLDA. Since the conclusion iigightforward and similar
to [Newman et al. 2007], we do not present the evaluationltsesn perplexity in detail.

As described in Section 3.4.3, PLDA+ discards a request vitlsaseadline is missed.
Here we investigate the impact of missed deadlines on trgiguality using the NIPS
dataset. We definmissing ratio ¢ as the average number of missed requests divided by
the total number of requests, which randge$, 1.0). By randomly dropping requests
in each iteration, we simulated discarding different amswi requests in each iteration.
We compared the quality of learned topic models under differ values. In experiments
we setP = 50. Fig. 7 shows the perplexities with differefitvalues versus the number
of sampling iterations whe® = 10. When the missing ratio is less th86%, the per-
plexities remain reasonable. At interacti¢dn, the perplexities ob’s betweer20% and
60% are about the same, whereas no deadline misses can acl¥@veetter perplexity.
Qualitatively, a2% perplexity drop does not show any discernible degradatidraining
results. Fig. 8 shows the perplexities of converged topidei®with various numbers of
topics versus differeni settings, at the end of iteratiot9)0. A larger K setting suffers
from more severe perplexity degradation. Nevertheléss,60% seems to be a limiting
threshold that PLDA+ can endure. In reality, our experiragntiicate that the missing
ratio is typically lower than %, far from the limiting threshold. Though the missing ra-
tio depends highly on the workload and the computation enwirent, the result of this

Perp(x'®) = exp (
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Fig. 7: Perplexity versus the number of iterationBig. 8: Perplexity with various numbers of topics ver-
when missing ratio i6.0, 0.2, 0.4, 0.6 and0.8. sus missing ratio.

experiment is encouraging that PLDA+ can operate well eveend is high.

4.3 Speedups and Scalability

The primary motivation for developing distributed algbrits for LDA is to achieve a
good speedup. In this section, we report the speedup of PL&npared to PLDA.
We used Wiki-20T and Wiki-200T for speedup experiments. Bitisg the number of
topics K = 1,000, we ran PLDA+ and PLDA on Wiki-20T using = 64, 128, 256, 512
and1, 024 processors, and on Wiki-200T usidg)= 64, 128,256, 512,1,024 and2, 048
processors. Note that for PLDAP, = P,,+ P, and the ratio of P,, | /| P;| was empirically
settoy = 0.6 according to the unit sampling time and transfer time. Thalmer of threads
in a thread pool was set &= 50, which was determined based on the experiment results.
As analyzed in Section 3.5.2, the ideal speedup efficien®L&IA+ is ﬁ = 0.625.

Fig. 9 compares speedup performance on Wiki-20T. The sppagds computed relative
to the time per iteration when using = 64 processors, because it was impossible to run
the algorithms on a smaller number of processors due to melingtations. We assumed
the speedup o = 64 to be64, and then extrapolated on that basis. From the figure, we
observe that whef® increases, PLDA+ simply achieves much better speedup thBAP
thanks to the much reduced communication bottleneck of PLDRg. 10 compares the
ratio of communication time over computation time on Wikil2 WhenP = 1,024, the
communication time of PLDA i33.38 seconds, which is about the same as its computation
time, much longer than that of PLDA+3%68 seconds.

From the results, we conclude that: (1) When the number ofgasmrs grows large
enough (e.g.P = 512), PLDA+ begins to achieve better speedup than PLDA,; (2) ¢t fa
if we take the waiting time for synchronization in PLDA intortsideration, the speedup
of PLDA could have been even worse. For example, in a busyildiséd computing
environment, wher? = 128, PLDA may take abouT0 seconds for communication in
which only aboutl0 seconds are used for transmitting word-topic matrices aost of the
time is used to wait for computation to complete.

On the larger Wiki-200T dataset, as shown in Fig. 11, the dqge®f PLDA starts to
flatten out atP = 512, whereas PLDA+ continues to gain in sp&edFor this dataset,

LFor PLDA+, the parameter of pre-fetch number and thread paelwas set t& = 100 and R = 50. With
W = 200,000 and K = 1,000, the matrix isl.6GBytes, which is large for communication.
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Fig. 9: Parallel speedup results fét to 1,024 pro-
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we also list the sampling and communication time ratio of Rldhd PLDA+ in Fig. 12.
PLDA+ keeps the communication time to consistently low ealfromP = 64 to P =
2,048. WhenP = 2,048, PLDA+ took only about0 minutes to finish100 iterations
while PLDA took aboutl60 minutes. Though eventually Amdahl's Law would kick in to
cap speedup, it is evident that the reduced overhead of PLji@Amits it to achieve much
better speedup for training on large-scale datasets usimg processors.

The above comparison did not take preprocessing into ceratidn because the prepro-
cessing time of PLDA+ is insignificant compared to the tnainiime as analyzed in Sec-
tion 3.5.2. For example, the preprocessing time for the exy@at setting ofP? = 2,048
on Wiki-200T is35 seconds. For training, hundreds of iterations are requin@t each
iteration taking about3 seconds.

5. CONCLUSION

In this paper, we presented PLDA+, which employs data placgnpipeline process-

ing, word bundling, and priority-based scheduling streedgo substantially reduce inter-
computer communication time. Extensive experiments ogelacale datasets demon-
strated that PLDA+ can achieve much better speedup thanopeeattempts on a dis-

tributed environment.
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