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Abstract
Distributed knowledge representation (KR) en-
codes both entities and relations in a low-
dimensional semantic space, which has signifi-
cantly promoted the performance of relation extrac-
tion and knowledge reasoning. In many knowledge
graphs (KG), some relations indicate attributes of
entities (attributes) and others indicate relations
between entities (relations). Existing KR mod-
els regard all relations equally, and usually suffer
from poor accuracies when modeling one-to-many
and many-to-one relations, mostly composed of at-
tribute. In this paper, we distinguish existing KG-
relations into attributes and relations, and propose
a new KR model with entities, attributes and rela-
tions (KR-EAR). The experiment results show that,
by special modeling of attribute, KR-EAR can sig-
nificantly outperform state-of-the-art KR models in
prediction of entities, attributes and relations. The
source code of this paper can be obtained from
https://github.com/thunlp/KR-EAR.

1 Introduction
People build large-scale knowledge graphs (KG), such as

Freebase, DBpedia and YAGO, to store complex structured
information about the facts of the real world. The facts in
KGs are usually organized in the form of triplets, e.g., (Wash-
ington, CapitalOf, USA). KGs have been widely adopted
in various applications such as question answering and Web
search.

Existing KGs have already included thousands of relation
types, millions of entities and billions of triplets. Neverthe-
less these KGs remain far from complete as compared to the
amount of real-world facts. In order to further expand KGs,
many researches have been devoted to automated fact explo-
ration.

Recently, neural-based representation learning (RL) meth-
ods are proposed to encode the semantics of both entities
and relations in low-dimensional semantic space (i.e., embed-
dings), which can be further employed to discover novel facts.
As a simple and effective neural-based RL model, TransE
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[Bordes et al., 2013] learns low-dimensional vectors for both
entities and relations, and regards the relation in a triplet as a
translation between the embeddings of the two entities, that
is, h+ r ≈ t when the triple (h, r, t) holds. TransE achieves
amazing performance for knowledge graph completion and
relation extraction from text [Bordes et al., 2013].

However, TransE encounters issues when modeling one-
to-many and many-to-one relations. From many KGs we
observe that, some relations indicate attributes of entities
(the tail entity is usually abstraction, such as Gender and
Profession), and others indicate relations between enti-
ties (the head and tail entities are both real world objects).
Hence, existing KG-relations can be divided into attributes
and relations.

Table 1: The relationships between some typical attributes
and relations and their corresponding mapping properties.

Relation Type Relation Et Eh

Attributes

nationality 1.05 1,551.90
gender 1.00 637,333.33

ethnicity 1.12 41.52
religion 1.09 107.40

Relations

parents 1.58 1.67
capital 1.29 1.42
author 1.02 2.17

founder 1.37 1.31

In Table 1, we list some typical attributes and relations with
their information including name, Eh, Et (For each relation
or attribute, we compute two statistics, the expectation num-
ber of tail entities per head entity and the expectation number
of head entities per tail entity, denoted as Et and Eh respec-
tively). As demonstrated in the table, attributes are the pri-
mary source of one-to-many and many-to-one relations. For
example, in the attribute Gender, the attribute property Male
is regarded as an entity, which is connected with millions of
human entities. For these relations, TransE and its exten-
sions like TransH [Wang et al., 2014b] and TransR [Lin et
al., 2015b] cannot sufficiently build translation between enti-
ties and their attribute properties.

Evidently, attributes and relations exhibit rather distinct
characteristics: (1) For relations, both head and tail entities
are usually from a large entity set. Each entity only builds a
specific relation with a limited number of entities. (2) For at-
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Figure 1: An illustration of KR-EAR and traditional KR representation models. A1 and A2 are two attributes. The value set of
attribute A1 (V1) contains e6, e7 which are square (also colored with yellow), while A2 (V2) contains e7, e8 which are pentagon
(also colored with green). In traditional KR representation model (left), attributes A1 and A2 are regarded as relations ra and
rb. In contrast, KR-EAR uses traditional KR representation model to encode relational triples and regards attribute prediction
as a classification problem.

tributes, the attribute properties are usually from a small set of
entries. For example, the relation Gender typically has two
properties {Female, Male}. Each property is always shared
by many entities. Hence we should model attributes and rela-
tions in different ways.

In this paper, we present a new KR model with entities,
attributes and relations (KR-EAR). In this framework, each
entity has various attributes, and entities are connected with
relations. Both entities and relations are represented with
low-dimensional vectors (embeddings). The embeddings are
learned by: (1) building translation between entities accord-
ing to relations, as in TransE (also applies to TransH and
TransR); and (2) inferring attribute properties based on en-
tity embeddings.

We build a real-world dataset to evaluate the performance
of KR-EAR on knowledge graph completion, including entity
prediction, relation prediction and attribute prediction. The
experiment results show that, by explicitly modeling of at-
tributes, KR-EAR consistently and significantly outperforms
state-of-the-art KR models in the three tasks.

2 Related Work
In recent years, many works have made great effort on

modeling multi-relational data such as social networks and
KGs. There are several approaches to model multi-relational
data. Some works use latent representations of entities and
relations to propagate information between triples and cap-
ture global dependencies in the data. In [Kemp et al., 2006;
Miller et al., 2009; Sutskever et al., 2009; Zhu, 2012],
they use Bayesian clustering for link prediction. In [Singh
and Gordon, 2008; Nickel et al., 2011; 2012], they adopt
the idea of matrix/tensor factorization. Moreover, neu-
ral based models[Bordes et al., 2011; Chen et al., 2013;
Socher et al., 2013; Bordes et al., 2013; 2014] have at-
tracted much attention. Among all of them, TransE [Bor-
des et al., 2013] and its attention [Wang et al., 2014b;
Lin et al., 2015b] achieve a good trade-off between prediction
accuracy and computational efficiency by regarding relations

as a translation between entities. We introduce TransE and its
extensions TransH and TransR in detail.

TransE
For each triple (h, r, t), TransE [Bordes et al., 2013] wants

h + r ≈ t when (h, r, t) holds. This indicates that t should
be the nearest entity from (h+ r). Hence, TransE defines the
following energy function

fr(h, t) = ‖h+ r− t‖L1/L2 (1)

The function returns low score if (h, r, t) holds, vice versa.

TransH
TransH [Wang et al., 2014b] enables an entity to have dis-

tinct embeddings when involved in different relations. For
a relation r, TransH models the relation with a vector r and
a hyperplane with wr as the normal vector. Then the score
function is defined as

fr(h, t) = −‖h−wT
r hwr + r− (t−wT

r twr)‖L1/L2 (2)

TransR
TransR [Lin et al., 2015b] models entities and relations in

entity space and relation spaces, and performs translation in
relation spaces. TransR sets a projection matrix Mr ∈ Rk×d,
which may projects entities from entity space to relation
space. Via the mapping matrix, the energy function is cor-
respondingly defined as

fr(h, t) = ‖hMr + r− tMr‖L1/L2 (3)

We note that, these KR models regard all relations equally,
and usually suffer from poor accuracies when modeling one-
to-many and many-to-one relations mostly composed of at-
tributes. In contrast, by splitting existing KG-relations into
attributes and relations, we only use existing KR models to
model relations between entities.

Attributes have already been considered in some previ-
ous works. [Nickel et al., 2012] handles attributes by per-
forming joint matrix factorization on an entity-attribute ma-
trix and tensor factorization. [Suchanek et al., 2011] filters



unnecessary literals in when aligning KGs. We note that,
these methods only regard the triples with literals as attribu-
tional triples. In fact, many one-to-many and many-to-one
triples which consist of two entities can be an attributional
triple, e.g., (Steve Jobs, Gender, Male). By separating the
modeling of relational and attributional triples, KR-EAR can
learn superior representations of entities, attributes and rela-
tions for knowledge graph completion as shown in our exper-
iments.

3 Problem Formulation
We first introduce the notations used in this paper. LetG =

(E,S, Y ) denotes a KG, where E = {e1, e2, · · · , e|E|} is
a set of |E| entities, S is the relational triples and Y is the
attributional triples.

Definition 1. Relational Triples: S ⊆ E × R × E is
a set of relational triples representing the relations between
entities, where R is a set of |R| relations.

Definition 2. Attributional Triples: Y ⊆ E × A × V is
a set of attributional triples representing the attributes of enti-
ties, where A = {A1, A2, ...A|A|} is a set of |A| attributes,
and each attribute Ai ∈ A has a corresponding value set
Vi ∈ V . For example, a person’s gender may be Male or
Female.

Given a knowledge graph G, our objective is to learn em-
beddings X of entities, relations and attributes, to predict re-
lations between entities and to predict attributes of entities.
The embeddings are set in Rk and we denote them with the
same letters in boldface.

4 Knowledge Representation with Entities,
Attributes and Relations

In this section, we introduce our KR-EAR model that
learns knowledge representation with entities, attributes and
relations.

4.1 Framework
Our goal is to design a unified model to represent not only

relations between entities but also attributes of entities. We
define an objective function by maximizing the joint proba-
bility of relational triples and attributional triples given the
embeddings X, i.e., P (S, Y |X). It assumes that relational
triples and attributional triples are conditionally independent,
and formalize the objective function as:

P (S, Y |X) = P (S|X)P (Y |X)

=
∏

(h,r,t)∈S

P ((h, r, t)|X)
∏

(e,a,v)∈Y

P ((e, a, v)|X),

(4)

where P ((h, r, t)|X) denotes the conditional probability of
relational triples (h, r, t) and P ((e, a, v)|X) denotes the con-
ditional probability of attributional triple (e, a, v). Hence, our
model KR-EAR consists of two core components: (1) Rela-
tional Triple Encoder embeds the correlations between enti-
ties and relations; (2) Attributional Triple Encoder embeds
the correlations between entities and attributes, acting as a
classification model for attribution prediction.

Figure 1 shows an illustration of our proposed model KR-
EAR as compared to existing KR models. In a traditional KR
model (left), attributional triples are encoded in the same way
as relational triples. In contrast, KR-EAR regards attribute
prediction as a classification task, as well as still using tradi-
tional KR models to encode relational triples. We introduce
the two components in detail as follows.

4.2 Relational Triple Encoder (RTE)
In RTE, we aim to embed entities and relations to cap-

ture the correlations between them. When learning from re-
lational triples, we usually optimize the conditional proba-
bility P (h|r, t,X), P (t|h, r,X) and P (r|h, t,X) instead of
P ((h, r, t)|X).

In this paper, without less of generality, we adopt TransE
and TransR to encode relational triples. In this framework,
take the conditional probability P (h|r, t,X) for example, it
is formalized as follows:

P (h|r, t,X) =
exp(g(h, r, t))∑

ĥ∈E exp(g(ĥ, r, t))
(5)

where g() is the energy function which indicates the correla-
tion of relation r and entity pair (h, t). Here, we can follow
TransE to define the energy function g(h, r, t) as:

g(h, r, t) = −||h+ r− t||L1/L2 + b1, (6)
or follow TransR to define it as:

g(h, r, t) = −||hMr + r− tMr||L1/L2 + b1, (7)
where b1 is a bias constant, Mr is the projection matrix
described in Eq. (3). We name the two versions as KR-
EAR(TransE) and KR-EAR(TransR) separately. Note that,
the effectiveness of formalizing TransE/TransR in a probabil-
ity fashion has been verified in [Wang et al., 2014a].

In fact, other KR models such as TransD [Ji et al., 2015],
TranSparse [Ji et al., 2016], KG2E [He et al., 2015], PTransE
[Lin et al., 2015a] can also be easily adopted as relational
triple encoder. Due to the space limit, in this paper we only
explore the effectiveness of TransE and TransR.

4.3 Attributional Triple Encoder (ATE)
It is intuitive that, the correlations between entities and

their attributes should be captured with a classification model.
Hence, in ATE we consider the conditional probability
P (v|a, r,X) for each triple (e, a, v), and formalize the con-
ditional probability as follows:

P (v|e, a,X) =
exp(h(e,a,v))∑

v̂∈Va
exp(h(e,a, v̂))

(8)

where h() is the scoring function for each attribute value of a
given entity.

The function h() is defined as follows. We first transform
entity embeddings into the attribute space via a single-layer
neural network, and then calculate the semantic similarity be-
tween the transformed embedding and the embedding of the
corresponding attribute value:
h(e,a,v) = −||f(eWa + ba)−Vav||L1/L2 + b2, (9)

where f() is a nonlinear function such as tanh , Vav is the
embedding of attribute value v and b2 is a bias constant.



Attribute Correlations
It is well-acknowledged that, various attributes of an en-

tity usually have strong correlations. For example, a person
having British nationality is more probable to speak English.
The division of attributes and relations in the KR-EAR model
enables the model to consider the correlations between at-
tributes for inference.

Formally, for an entity e and its attributional triple (e, a, v),
suppose Y (e) = {(e, â, v̂)|(e, â, v̂) ∈ Y } are other attributes
of e except (e, a, v) and are already known. The conditional
probability of (e, a, v) is formalized as follows:

P ((e, a, v)|X) ∝ P (v|e, a,X)P ((e, a, v)|Y (e)) (10)

Here P ((e, a, v)|Y (e)) indicates the probability of the attri-
butional triple (e, a, v) when given other attributes of entity
e, which is defined as a softmax function:

P ((e, a, v)|Y (e)) =
exp(z(e,a,v, Y (e))∑

v̂∈Va
exp(z(e,a, v̂, Y (e)))

(11)

where z() is a scoring function measuring the inference cor-
relations between attributes. It is calculated according to the
correlation between (e, a, v) and each attributional triple in-
volved in Y (e) in a compositional fashion:

z(e,a,v, Y (e)) ∝
∑

(e,â,v̂)∈Y (e)

P ((a, v)|(â, v̂))(Aa·Aâ)

(12)
Here (Aa·Aâ) is the dot product of Aa and Aâ, indi-
cating the relatedness between the attributes Aa and Aâ.
P ((a, v)|(â, v̂)) is the conditional probability of attribute
value (a, v) given (â, v̂), which is obtained over each entity in
training data, indicating the correlation between the attribute
values (a, v) and (â, v̂).

4.4 Optimization and Implementation Details
Here we introduce the learning and optimization details for

the KR-EAR model. We define the optimization function as
the log-likelihood of the objective function in Eq. (4):

O(X) = log(P (S, Y |X)) + γC(X) (13)

where γ is a hyper-parameter weighting the regularization
factor C(X), which is defined as follows:

C(X) =
∑
e∈E

[
||e|| − 1

]
+
+
∑
r∈R

[
||r|| − 1

]
+

+
∑
e∈E

|A|∑
i=1

[
||eWi + bi|| − 1

]
+
+

|A|∑
i=1

[
||Vi|| − 1

]
+

(14)

where [x]+ = max(0, x) returns the greater one between 0
and x. The regularization factor will normalize the embed-
dings during learning.

To solve the optimization problem, we adopt stochastic
gradient descent (SGD) to minimize the optimization func-
tion. For learning, we iteratively select random mini-batch
from the training set until converge.

Here we also introduce an implementation detail that will
significantly influence the efficiency of KR-EAR learning.

Approximation of Softmax Function
In the KR-EAR model, it is impractical to directly

compute the softmax functions P (h|r, t,X), P (t|h, r,X),
P (r|h, t,X), P (v|e, a,X) and P ((e, a, v)|Y (e)). The rea-
son is that, the cost of computing normalizers for these soft-
max functions is proportional to |E| and |V |, which is con-
siderably huge for large-scale KGs like Freebase. Hence,
we adopt negative sampling [Mikolov et al., 2013] as com-
putationally efficient approximation of full softmax function.
Take P (h|r, t,X) in Eq. (5) for example. It is approximated
via negative sampling as follows:

P (h|r, t,X) =
∏

(h,r,t)∈S

[
σ(g(h, r, t))

c1∏
i=1

E(hi,r,t)∼P (S−)σ(g(hi, r, t))
]

(15)

where σ(x) = 1/(1 + exp(−x)) is sigmoid func-
tion, S− is the invalid triple set defined as S− =
{(h′, r, t)}, and P (S−) is a function randomly sampling
instances from S−. Similarly, we use negative sampling
to approximate P (t|h, r,X), P (r|h, t,X), P (v|e, a,X) and
P ((e, a, v)|Y (e)).

4.5 Complexity Analysis
As shown in Table 2, we compare the number of parame-

ters and computational complexity of various baselines with
our model. In this table, we denote Ne as the number of en-
tities, Nr as the number of relations, Na as the number of
attributes, K as the vector dimension, S1 as the number of
relational triples for learning and S2 as the number of attribu-
tional triples for learning.

Table 2: The number of parameters and computational com-
plexity of models

Method # of Parameters Complexity
TransE (Ne +Nr +Na)K (S1 + S2)K
TrasnH (Ne + 2Nr + 2Na)K (S1 + S2)K
TransR NeK + (Nr +Na)K

2 (S1 + S2)K
2

KR-EAR(TransE) (Ne +Nr)K +NaK
2 S1K + S2K

2

KR-EAR(TransR) NeK + (Nr +Na)K
2 (S1 + S2)K

2

5 Experiments
5.1 Datasets and Experiment Setting

We evaluate our model on a typical large-scale KG Free-
base. Freebase [Bollacker et al., 2008] is a large-scale
and growing collaborative KG consisting of data composed
mainly by its community members, which provides general
facts of the real world. For example, the triple (Barack
Obama, Spouse, Michelle Obama) describes there is a rela-
tion Spouse between Barack Obama and Michelle Obama.

Dataset Construction
We construct the dataset for evaluation as follows:



(1) Filtering of low-frequency entities and relations. We
select those entities and relations which have appeared in at
least 30 triples.

(2) Filtering of reversed relations. In Freebase, each re-
lation also corresponds to a reversed relation with swapped
head and tail entities. For each relation with its re-
versed relation, we only need to keep one in our dataset.
More specifically, for those many-to-one relations and their
one-to-many reversed relations, we will keep the former
and remove the latter, since the latter ones are usually at
odds with human intuitions. For example, for the relation
people.person.nationality, we will remove its re-
versed relation !people.person.nationality.

(3) Division between attributes and relations. In origi-
nal Freebase, there is no explicit division between relational
triples and attributional triples. We manually divide the origi-
nal Freebase relations into two types: attributes and relations.
Besides, we also do experiments in the data which we split
relations and attributes according to their mapping properties
(The classification accuracy is 86.2%) and get similar conclu-
sion. Due to the limit of space, we don’t report the results in
this paper.

Finally, we build a dataset named as FB24k, and we ran-
domly separate datas into training and testing sets. The statis-
tics of the dataset is shown in Table 3.

Table 3: Statistics of datasets.

Dataset FB24k
#Entities 23,634

#Relations 673
#Attributes 314

#Total Tripes 423,560
#Train (Relational Triples) 205,643
#Test (Relational Triples) 10,766

#Train (Attributional Triples) 196,850
#Test (Attributional Triples) 10,301

Using dataset FB24k, we evaluate the performance of our
model and other baselines on the task of KG completion,
which has been widely used for evaluation in previous works
[Bordes et al., 2013; Wang et al., 2014b; Lin et al., 2015b]. In
this paper, we divide KG completion into three sub-tasks: (1)
Entity Prediction; (2) Relation Prediction; and (3) Attribute
Prediction.

5.2 Baselines and Parameter Settings
In the three sub-tasks of KG completion, we compare our

model with several state-of-art KR models including TransE
[Bordes et al., 2013], TransH [Wang et al., 2014b] and
TransR [Lin et al., 2015b], implemented with the source
codes released by [Lin et al., 2015b].

We tune our models using five-fold validation on the train-
ing set. We use a grid search to determine the optimal pa-
rameters and manually specify the parameter spaces learn-
ing rate λ for SGD among {0.1, 0.01, 0.001}, γ for soft
constraints among {0.1, 0.01, 0.001}, the vector dimension
k among {20, 50, 80, 100} and all bias constant b1, b2, c1, c2
among −10 to 10. The best configurations are λ = 0.001,
γ = 0.1, k = 100, b1 = 7, b2 = −2, c1 = 10, c2 = 1

and taking L1 as dissimilarity metric. For training, we set
the iteration number over all the training triples as 1000. The
running time of per iteration is 14s for TransE and 297s for
TransR in single thread.

5.3 Entity Prediction
Entity prediction aims to infer the possible head/tail en-

tities in testing triples when one of them is missing. For
each testing triple (h, r, t), we replace its head/tail entity with
each entity in the dataset, and calculate the ranking score
σ(g(h, r, t)). Afterwards, we rank all candidate entities in
dataset according to their scores in ascending order.

Following the setting in [Bordes et al., 2013] , we report
two measures as our evaluation metrics: the average rank of
all correct entities (Mean Rank) and the proportion of correct
entities ranked in top 10 (Hits@10). Note that, for a particular
triple (h, r, t), its corrupted triples may also exist in the KG
and should also be regarded as valid. The evaluation metrics
may be unfair for those methods that rank other valid triples
higher than (h, r, t). Hence, we filter out all other valid triples
before ranking. Following the setting in [Bordes et al., 2013],
we name the filtered version as “Filter” and the unfiltered one
as “Raw”.

Results
We show the evaluation results on entity prediction in Table

4. From the table we observe that: (1) KR-EAR outperforms
other baseline methods including TransE, TransH and TransR
significantly and consistently in Mean Rank. This indicates
that KR-EAR learns more reasonable embeddings for entities
and relations; (2) KR-EAR(TransE) outperforms TransE and
KR-EAR(TransR) outperforms TransR in Hit@10. This indi-
cates KR-EAR can take advantage of traditional KR models.

5.4 Relation Prediction
Relation prediction aims to infer the possible relation be-

tween two given entities. For each testing triple (h, r, t), we
replace its relation with each possible relation r̂ in the KG
and calculate the ranking score σ(g(h, r̂, t)). Afterwards, we
rank all the candidate relations in the KG according to their
scores in ascending order.

We report two measures as our evaluation metrics: Mean
Rank and Hits@1.

Correlation between Relations & Attributes
It has shown that type-constraints can generally support

multi-relational data modeling with latent variable models
[Krompaß et al., 2015]. We argue that the type information
of entities is a special case of entity attributes. In KR-EAR,
we can easily adopt the constraints between the attributes of
head and tail entities for relation prediction, named as CRA.

Results
We show the evaluation results on relation prediction in

Table 5. From the table we observe that: (1) KR-EAR again
outperforms other baseline methods significantly and consis-
tently in both Mean Rank and Hits@1, while TransE, TransH
and TransR achieve close results in this sub-task. (2) For KR-
EAR(TransE) and KR-EAR(TransR), CRA can further bring
the improvements of 2.5% and 1.4% in Hits@1, and also get



Table 4: Evaluation results on entity prediction.

Entity Head Tail Total

Metric Mean Rank Hits@10 (%) Mean Rank Hits@10 (%) Mean Rank Hits@10 (%)
Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter

TransE 385 277 20.2 39.2 134 124 51.4 66.7 259 200 35.8 53.0
TransH 416 309 17.7 35.4 147 138 50.0 65.0 282 224 33.9 50.2
TransR 394 285 20.5 41.2 125 116 53.4 71.0 260 200 37.0 56.1

KR-EAR(TransE) 295 198 22.7 39.6 77 69 54.2 69.5 186 133 38.5 54.5
KR-EAR(TransR) 268 170 23.4 43.0 75 66 55.7 71.5 172 118 39.5 57.3

Table 5: Evaluation results on relation prediction.

Metric Mean Rank Hits@1 (%)
Raw Filter Raw Filter

TransE 3.1 2.8 65.9 83.8
TransH 3.4 3.1 64.9 84.1
TrasnR 3.4 3.1 65.2 84.5

KR-EAR(TransE) 2.4 2.1 67.9 86.2
+ CRA 1.8 1.6 70.9 88.7

KR-EAR(TransR) 2.6 2.2 66.8 89.0
+ CRA 1.9 1.6 71.5 90.4

a lower Mean Rank. This demonstrates the effectiveness of
considering entity attributes for relation prediction.

5.5 Attribute Prediction
Attribute prediction aims to predict the missing attributes

for an entity. This task used to be a part of entity prediction
in previous works [Bordes et al., 2013; Wang et al., 2014b;
Lin et al., 2015b]. For each testing triple (e, a, v), we replace
the attribute value with each possible value v̂ of the attribute
and calculate a ranking score σ(h(e,a, v̂)). Afterwards, we
rank all the candidates according to their scores in ascending
order.

Note that, KR-EAR can also consider Attribute Cor-
relations (AC) by ranking candidates according to
σ(h(e,a, v̂))σ(z(e,a, v̂, Y (e))).

We report two evaluation measures for attribute prediction:
Mean Rank and Hits@1.

Table 6: Evaluation results on attributes prediction.

Metric Mean Rank Hits@1 (%)
Raw Filter Raw Filter

TransE 10.7 5.6 36.5 55.9
TransH 10.7 5.6 38.5 57.9
TrasnR 9.0 3.9 42.7 65.6

KR-EAR(TransE) 8.3 3.2 47.2 69.0
+AC 7.5 3.0 49.4 70.4

KR-EAR(TransR) 8.3 3.2 47.6 69.8
+AC 7.5 3.0 49.8 70.8

Results
We show the evaluation results on attribute prediction in

Table 6. From the table we observe that: (1) KR-EAR still
outperforms other baselines significantly and consistently.
This verifies the necessity of modeling attribute prediction as
classification instead of translation in traditional KR models;

(2) For both KR-EAR(TransE) and KR-EAR(TransR), taking
attribute correlations into consideration can achieve 1.4% and
1.0% improvements in Hits@1. This indicates that attribute
correlations are useful in attribute prediction.

Table 7: Illustration of Attribute Correlations

Attribute Correlated Attributes
Profession Marital Status, Nationality, Gender, Lan-

guage, Ethnicity
Release Region
of Film

Country of Film, Language of Film, Re-
lease Date of Film, Genre of Film

Time Zone of
Location

Country of Location, Currency of Location

Musical Gen-
res

Instruments Played, Recording contribu-
tions, Profession, Instrument(s) or Vocal
Role

TV Genres Country of TV, Languages of TV, Origi-
nal Network of TV, Regular Acting Perfor-
mances

Illustration of Attribute Correlations
In Table 7, we give some examples of attribute correlations

obtained on the FB24k training set via KR-EAR. We can find
that when given an attribute, the related attributes often reflect
reasonable correlations in common-sense. This indicates that
KR-EAR can effectively capture the correlations among at-
tributes.

6 Conclusion and Future Work
In this paper, we distinguish existing KG-relations into at-

tributes and relations, and propose a new KR model with
entities, attributes and relations (KR-EAR). In addition, we
also encode the correlations between entity attributes in KR-
EAR. In experiments, we evaluate our model on three sub-
tasks for predicting entities, relations and attributes. By ex-
plicitly modeling entity attributes, KR-EAR can significantly
and consistently outperform state-of-the-art KR models on all
three sub-tasks.

In the future, we will explore more in the following re-
search directions: (1) Currently KR-EAR regards the infer-
ence of entities, relations and attributes independently. In the
future, we can employ probabilistic graphical model to fur-
ther capture the complicated correlations between them. (2)
In this paper, we split relations and attributes manually which
consumes large amount of time. In the future, we can em-
ploy how to split relations and attributes by held-out machine
learning methods.
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