
Query Suggestion with Feedback Memory Network
Bin Wu*

Tsinghua University
wub16@mails.tsinghua.edu.cn

Chenyan Xiong∗
Carnegie Mellon University

cx@cs.cmu.edu

Maosong Sun†
Tsinghua University

sms@mail.tsinghua.edu.cn

Zhiyuan Liu
Tsinghua University

liuzy@tsinghua.edu.cn

ABSTRACT
This paper presents Feedback Memory Network (FMN) which mod-
els user interactions with the search engine for query suggestion.
Besides modeling the queries issued by the user, FMN also considers
user feedback on the search results. It converts user browsing and
click actions to the attention over the top-ranked documents and
combines them into the feedback memories of the query, thus better
models the underlying information needs. The feedback memories
and the query sequence are then combined to suggest queries by
the sequence-to-sequence neural network. Modeling user feedback
makes it possible to suggest diverse queries for the same query se-
quence, if users have preferred different search results that indicate
different information needs. Our experiments on the search log
from a Chinese commercial search engine showed the stable and
robust advantages of FMN. Especially when the feedback is richer or
more informative, FMN provides more diverse and accurate sugges-
tions, which is exceptionally helpful for ambiguous sessions where
more information is required to infer the search intents.

KEYWORDS
Query Suggestion, Feedback Memory Network, User Modeling

1 INTRODUCTION
In modern information retrieval, a session of multiple queries is
often required to complete a search task: precisely expressing the
information need in a short ad hoc query sometimes can be tricky;
the search engine may fail to provide relevant search results for
the query; the user may decide to further explore the topic after
browsing the initial search results. Query suggestion techniques,
which provide query auto-completion, refinements, and related
queries, have been widely adopted by search engines to facilitate
this information seeking process and improve user satisfaction [2].

A successful query suggestion depends on modeling the user’s
information needs accurately. The information needs are reflected
by the user’s interactions with the search engine in the session:
the query sequence she issued, and the feedback she provided on
∗Bin Wu and Chenyan Xiong contributed equally to this work.
†corresponding author

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5639-8/18/04.
https://doi.org/10.1145/3178876.3186068

Figure 1: Information needs reflexed by user feedbacks

the search results. Previous context-aware query suggestions have
modeled the query sequence efficiently, but the user feedbacks are
merely treated as a secondary resource to help model the query
sequence or even overlooked [8, 25].

However, user feedbacks sometimes are necessary for search en-
gines to infer the precise search intent behind queries. For example,
as shown in Figure 1, the query “Apple” itself is ambiguous, but
the user’s preference on ‘Apple.com’ or ‘Apple Juice’ reflexes the
search intent more precisely.

This paper presents a neural query suggestion method that mod-
els both the query sequence and the user feedback in the session,
named as FeedbackMemoryNetwork (FMN). FMN embeds the search
results of a query using a memory network, which converts the
contents of ranked documents to distributed representations by
recurrent neural networks, and calculates the attention over these
documents according to the similarity between the query and those
documents and also user’s preference on those documents. FMN
then produces the ‘feedback memories’ for the query by combining
the content embeddings via their attention scores. In the query
suggestion task, the feedback memories of queries in a session
is easily integrated to a sequence-to-sequence model to produce
feedback-aware query suggestions.

FMN is trained end-to-end using user behaviors in search logs.
Given the correct query suggestions, FMN learns the query sequence
model and the feedback model simultaneously. The feedback model
helps distinguish the different query suggestions following the
same input query sequence but with different click patterns, which
would confuse the sequence-to-sequence model without feedback
awareness. It also propagates the training signals across different
sessions with shared search results, reducing the sparsity of the
query sequence. The feedback-awareness introduced by FMN thus
influences not only the predicting behavior of the query suggestion
model, but also the learning of the model itself.

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1563

https://doi.org/10.1145/3178876.3186068

Our experiments on the search log from Sogou, a major Chinese
commercial search engine, demonstrated FMN’s robust effectiveness.
Stable improvements have been observed over an unsupervised
method, feature-based methods, and state-of-the-art neural meth-
ods that do not consider user feedbacks. FMN’s advantages are more
significant in more extreme scenarios: On sessions that contain too
little information or more noisy signals, the additional feedback
signals make FMN’s performance more stable; on more ambivalent
queries where context-aware query suggestion systems may get
confused, FMN are more accurate because its feedback awareness
helps locate more fine-grained search intents. Our analyses fur-
ther revealed that the successful modeling of the feedback signal
is the source of FMN’s effectiveness: FMN produces more accurate
suggestions when more feedback signals are made available, or the
feedback signal is more informative.

The next section discusses the related work. The architecture
of FMN and its application in query suggestion are in Section 3. Ex-
periment settings and evaluation results are presented in Section 4
and 5. The last section concludes and discusses future work.

2 RELATEDWORK
Query suggestion systems utilize the ‘wisdom of crowds’ to suggest
semantically related queries for the input session. The semantic
relatedness can be modeled by the Query Flow Graph which con-
nects queries by their session co-occurrences [3]. It can also be
described by the similarities between queries’ search results [3, 28].
The query-click bipartite graph is another widely studied resource
to connect queries through their shared clicks [1], for example,
the relatedness can be described by the distance (hit time) in the
bipartite graph [18].

A lot of techniques have been developed to address the sparsity
of the ‘wisdom of crowds’—a major challenge in query sugges-
tion. The Term Query Graph enriches the Query Flow Graph with
term nodes; the connections between query nodes and term nodes
smooth the query flow and help find suggestions for tail queries [4].
The query-click graph and the Query Flow Graph can be united
to combine the strengths of both sides [14]. The sparse signals in
query suggestion can also be smoothed by clustering queries us-
ing search results [2] or the Query Flow Graph [22], and sharing
information within clusters. Another line of research is to build
additional connections between queries using external semantic
resources, for example, templates generated from WordNet [27],
shared entity annotations [6], and knowledge graph relations [13].

Cao et al. proposed the context-aware query suggestion frame-
work [8] which considers the whole query sequence in the session,
instead of only the last query. They used query clusters to build
a concept sequence suffix tree, for efficient and effective context-
aware query suggestions. The query sequence can also be modeled
by the Mixture Variable Memory Markov Model [12]. Context-
aware query suggestion considers more user actions in the session
and thus better models the information needs. Hence, the idea is
also effective in query classification [7] and ranking [29].

The rich signals developed in previous research have also been
combined for query suggestion by machine learning techniques.
For example, finding the right query substations or rewritings was
considered as a classification problem [16]. Ozertem et al. [21]

developed a ranking framework that learns to suggest queries di-
rectly from user’s search behaviors in the search log. It utilizes
the large-scale search logs and avoids the requirement of human
labels. Supervised suggestion systems are in general more accu-
rate than unsupervised ones while also being more flexible. Their
suggested results can also improve diversified and personalized
search [23, 24].

The sparse signals and large-scale training data make query
suggestion a natural fit for deep learning approaches. Sordoni et
al. [25] developed a hierarchical encoder-decoder model (HRED)
for context-aware query suggestion. The encoder first uses a two-
level recurrent neural network (RNN) to encode the query words
to the query embedding and then the query sequence to the ses-
sion embedding. It then decodes the session embedding to target
suggestions. HRED avoids sparsity using smoothly distributed rep-
resentations and better utilizes large-scale training data available in
search logs. It achieves better accuracy than feature-based systems.
Amore recent work upgraded HRED’s sequence-to-sequence model
with the attention and coping mechanism to model the varying
query importances and repeating terms in sessions [11].

This paper introduces memory network to model user feedbacks.
Memory network has provided an effective way to incorporate
external information into neural models [26]. A memory cell in the
memory network can be considered as a key-value pair: the key
generates the attention weight on the memory cell, and the value
is the external information to incorporate [20]. Memory networks
have been successfully adopted in many tasks, for example, reading
comprehension [20] and task-oriented dialog system [5].

3 FEEDBACK MEMORY NETWORK
This section first describes the architecture of Feedback Memory
Network (FMN), which models the user feedbacks on the search
results and produces feedbackmemories for the corresponding query.
Then it discusses how FMN is incorporated in a query suggestion
system and makes it feedback-aware.

3.1 Model Architecture
User’s preference on search results reflects more fine-grained in-
formation needs. It has been used as a static resource to infer doc-
ument’s relevance [10] and to train ranking models [15, 30]. FMN
models the feedback signals more dynamically with neural net-
works. As shown in Figure 2, FMN takes the user’s interactions
with the search engine as inputs and converts them to distributed
representations. The distributed representations are the feedback
memories of the query and encode the information needs reflected
by user’s preferences, for example, the preferences on ‘iPhone’ or
‘Apple pie’ for the query ‘apple’.

Given a query q, its search results D = {d1, ...di ...,dn }, and the
clicked positions C = {p |User clicked on dp .}, FMN considers the
clicked documents as positive feedback documents D+, and the
skipped documents as negative D−:

D+ ={dp |p ∈ C},
D− ={dp |p <= max(C) + 1,p < C}.

It uses the cascade assumption [10]: The user prefers documents
she clicked over those she skipped that are ranked higher or one

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1564

Figure 2: The architecture of FeedbackMemory Network. The clicked (left) and skipped (right) search results are encoded into
the positive and negative feedback memories by FMN’s content encoding and position encoding. They are combined by the
attention mechanism to produce the positive (F+) and negative (F−) feedback memories.

position lower than clicked ones, if no search result got clicked, it
indicates the user is not satisfied with the first search result:D+ = ∅
and D− = {d1}.

FMN encodes D+ and D− to the positive feedback memory F+

and the negative feedback memory F−, two continuous vectors rep-
resenting user’s preferences. It is conducted by three components:
the document content encoding, the position encoding, and the
attention mechanism that combines them.

Document Content Encoding: In FMN, a document’s content
is a sequence of its words dp = {wp

1 , ...w
p
j ...,w

p
|dp |

}. As in standard
sequence-to-sequence (seq2seq) learning, FMN embeds the docu-
ment’s words and uses a recurrent neural network (RNN) to encode
it to a continuous vector ®cdp .

®w j = Embc (wp
j), (1)

®cdp = GRUc (®wp
1 , ..., ®w

p
j ..., ®w

p
|dp |

). (2)

Embc is theword embeddingmatrix for document contents. |Embc | =
V × l , whereV is the size of the vocabulary, and l is the embedding
dimension. GRUc is the GRU model, a widely used RNN in seq2seq
learning. ®cdp is the output vector (the last hidden state) of the GRU.
The contents of all documents in D+ and D− are encoded by the
same Embc and GRUc .

Position Encoding: The ranking position of a document in
the search results conveys the search engine’s judgment about the
document’s relevancy. It also influences user’s perception of the
documents. To cover its effect, FMN includes the ranking position of
a document as the position embedding:

®posp = Embpos (p). (3)

Embpos is the position embedding matrix to be learned. Each of its
rows is the embedding of a position (p).

Attention Mechanism: FMN uses an attention mechanism to
weight-combine document content embedding and position embed-
ding to feedback memories. It captures the importances of docu-
ments in D+ and D− when inferring the search intent. For example,
if dp corresponds to a rare intent of the query, clicking it is more
informative; if dp is a navigational result, skipping it indicates more
unexpected intent.

Specifically, given the query q, positive documents D+ and neg-
ative documents D−, FMN learns the attention scores A+ on D+

and A− on D− from the interactions between the query and the
documents.

The query q = {wq
1 , ...w

q
j , ...,w

q
|q |} is encoded to an attention

vector ®aq :

®wq
j = Embq (wq

j), (4)

®aq = GRUq (®wq
1 , ..., ®w

q
j ..., ®w

q
|q |), (5)

where Embq and GRUq are the query embedding matrix and GRU
models of the attention mechanism.

The documents dp is encoded in the same way with another set
of document attention parameters:

®wp
j = Embad (w

p
j), (6)

®adp = GRUad (®w
p
1 , ..., ®w

p
j ..., ®w

p
|dp |

), (7)

The attention weights of the queryq on the documents inD+ and
D− are the normalized dot products of their attention embedding

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1565

Figure 3: Feedback-Aware Query Suggestion. The feedback
memories F+ and F− introduce the feedback signals to the
encoder-decoder neural network.

to the query’s:

Ap = ®aTq ®adp , (8)

A+ = softmax{Ap |dp ∈ D+}, (9)
A− = softmax{Ap |dp ∈ D−}. (10)

Note that the attention scores are normalized separately in D+

and D−; the user feedback signal is covered by the belonging of
documents in the positive and negative sets.

Feedback Memories: The attention scores, document embed-
ding, and position embedding together produce the positive and
negative feedback memories for the query:

F+ =
∑

dp ∈D+
A+p (M(®cdp | | ®posp) + bF), (11)

F− =
∑

dp ∈D−
A−
p (M(®cdp | | ®posp) + bF). (12)

The position embedding and the content embedding are concate-
nated (| |) and then projected by the to-be-learned matrix M and
bias bF . F+ and F− are the output vectors of FMN, representing the
positive and negative preferences reflected by user feedbacks. Be-
sides the projections, FMN’s parameters include the embeddings for
document content Embc , the query attention Embq , and the docu-
ment attention Embad , as long as the corresponding GRU unites:
GRUc , GRUq , and GRUad .

3.2 Feedback-Aware Query Suggestion
FMN’s feedback memories F+ and F− encode the information needs
reflected by user’s preferences. It can be integrated as the external
memories of the query in neural query suggestion systems and
then trained end-to-end using back-propagation. The integrated
query suggestions are feedback-aware: Both query sequences and
user feedbacks are considered; different queries can be suggested
for the same query sequence if the click patterns are different.

This work chooses a previous state-of-the-art neural model,
HRED [25], to integrate with FMN. HRED is a sequence-to-sequence
model. It first encodes the query sequence S = {q1, ...qk , ..,qK } to

a hidden vector, and then decodes the candidate query suggestions
from the vector. FMN is plugged in to enrich context-aware query
representations for the encoder, using the architecture shown in
Figure 3. The rest of this section describes the integration archi-
tecture, the candidate query suggestion scoring process, and the
model training using search logs.

Encoding with FMN: The query sequence and feedback memo-
ries are encoded by a two-level encoder:

The first level encodes each query qk by the standard seq2seq
model:

qk
GRUq
−−−−−→
Embq

®qk , (13)

which is similar to Equation 4 and 5 and has the same parame-
ters Embq and GRUq . The resulted query content embedding ®qk
conveys the information needs reflected by the query string.

The second level encodes the session’s query contents and feed-
back memories to the session embedding ®S . It first combines each
query’s content embedding with its feedback memories:

®vqk = ®qk + F+qk − F−qk . (14)

®vqk is the query ‘intent’ representation and contains signals from
the query content and the user preferences on the search results.

The intent representations of the query sequence are combined
by the session level GRUs :

®S = GRUs (®vq1 , ...®vqk , ...®vqK). (15)

The session embedding ®S includes information from the query
sequence and the user feedbacks.

Decoding: The decoder decodes the session embedding ®S to the
target query suggestion. This part is the same with HRED [25],
except that ®S is enriched with the feedback-awareness.

HRED first transforms ®S to the initial state of the decoder:

h0 = tanh(D ®S + b0). (16)

|D | = |h0 | × | ®S | is the projection and b0 is the bias. tanh() is the
activation function.

The target query suggestion qs = {ws
1 , ..,w

s
j , ...,w

s
|qs |

} is de-
coded by another GRU:

hj = GRUdec (hj−1,ws
j−1), (17)

and the probability of generating the next wordw j is:

p(w j |w1 : w j−1, ®S) = softmax(®wT
j f (hj−1, ®w j−1)), (18)

f (hj−1, ®w j−1) = Hhj−1 + E ®w j−1 + bprob , (19)

®w0 = ®0. (20)

f is a dense layer with parameters H ,E,bprob : |H | = | ®w j | |h0 |,
|E | = | ®w j |2 and bprob = | ®w j |. The softmax is taken over all possible
candidate words, for example, those appeared in candidate queries
or the entire vocabulary. ®0 is an all-zero vector.

ScoringCandidate Suggestions: Instead of directly generating
a query, a more conservative choice is to rank candidate query
suggestions using the decoder. The score of a candidate query qs is

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1566

Table 1: Statistics of the dataset used in the experiments.

Training Development Testing
Number of Sessions 7,978,441 3,989,220 36,519
Number of Queries 27,191,564 13,551,903 117,225

the probability of it being decoded given the session embedding:

s(qs) =
∏
j
p(w j |w1 : w j−1, ®S). (21)

The score can be integrated into a feature-based query suggestion
system, as in HRED [25].

Model Training: The whole model, including the feedback
memory network and the hierarchical encoder-decoder, are trained
end-to-end using sessions in the search log.

Given the queries, search results, and user feedbacks in a training
session, the last query of the session is treated as the correct query
suggestion qs [21]. The training is conducted by maximizing the
likelihood of qs given the other part of the training session:

l =
∑

w j ∈qs
logp(w j |w1 : w j−1, ®S).

Standard back propagation is used to send the gradients from the
likelihood to the decoder, the encoder, and then to FMN. The query
sequence model and the memory networks are optimized jointly
for better query suggestion accuracy.

4 EXPERIMENT
This section discusses the dataset, baselines, implementation details,
and evaluation metrics in our experiments.

Dataset: Our experiments are conducted on a large scale Chi-
nese search log from Sogou, a Chinese commercial search engine.
The search log includes queries, the titles and URL’s of displayed
documents, and clicks. Standard 30-minutes gap is used to split the
queries into sessions. As a query suggestion task, only sessions with
more than one query are used; the last query in a session is treated
as the correct suggestion [21, 25]. The content of a document is its
title, because we are not able to obtain the body text for enough
documents by crawling or from the Sogou-T corpus [9]. All the
queries and document titles are in Chinese. We segmented them
using the THULAC open source software [17]. The first 90, 000
most frequent Chinese words are used, the rest are replaced by
UNK . After the segmentation, everything is treated the same as in
English.

The sessions are randomly split into three parts: training (60%),
development (30%), and testing (10%). The training fold trains the
neural baselines and our method; the development fold trains the
supervised feature-based systems; the testing fold evaluates all
methods [25]. The statistics of the three folds are listed in Table 1.

The re-ranking setting in prior work [25] is used in our exper-
iments, in which the query suggestion systems are evaluated by
their ability to re-rank the candidate suggestions. The candidates
are the top-20 most frequent follow-ups in the search log for the
input query sequence. We chose this conservative setting because it
performs better than the generation-based setting [25] and to focus
on evaluating the effectiveness of FMN in modeling user feedbacks.

Table 2: Parameters to learn in the neural methods. The USE
column marks the models that use the corresponding pa-
rameters: H refers to HRED, P refers to PRFMN, and F refers
to FMN. The bracketed numbers (d1,d2,d3) are the input size,
hidden state size, and the number of layers of GRU’s, or the
dimension of the matrix parameters. The vocabulary is the
90k most frequent words in the search log.

Parameter Dimension USE Description
Embq (90k, 256) HPF Query Content
GRUq (256,256,1) HPF Query Content
GRUs (256,512,1) HPF Session Encoder
GRUdec (256, 512, 1) HPF Decoder
D (512,256) HPF Decoder Projection
b0 256 HPF Decoder Bias
H (256, 512) HPF Decoder Probability
E (256, 256) HPF Decoder Probability
bprob 256 HPF Decoder Probability
Embad (90k, 256) PF Document Attention
GRUad (256, 256, 1) PF Document Attention
Embcd (90k, 256) PF Document Content
GRUcd (256, 256, 1) PF Document Content
EmbP (15, 4) F Position Embedding
M (256,260) F Feedback Projection
bF 256 F Feedback Bias

Baselines: The baselines compared include frequency-based,
feature-based, and neural-based methods.

Frequency-based: The ADJ baseline ranks the candidate queries
solely by their frequencies following the original query sequence
in the search log [25].

Feature-based: We implemented the feature-based baselinemethod
in previous work [25]. It is a learning-to-rank model using state-
of-the-art query suggestion features. One can consider it as the
combination of conventional query suggestion systems. This paper
refers to it as LeToR. It is also the base query suggestion system—all
the other methods except ADJ are evaluated by their effectiveness
when serving as additional ranking features in LeToR [25].

For more fair comparisons, we implemented another two groups
of features tomodel the feedback information. The first is PRF-Feature,
which models the connections between the candidate query and the
displayed documents in the session. The second is Feedback-Feature,
which models the connections between the candidate query and
the clicked documents. Three features are extracted for either of
them: the query-document co-occurrence in the search log, their
contents’ Levenshtein (edit) distance, and the average embedding
distance between their word embeddings from word2vec [19].

Neural-based: The main neural baseline is HRED [25], the previ-
ous state-of-the-art and the query sequence model used with FMN.
We also compare with a degraded version of FMNwhich treats all dis-
played results as positive documents (Pseudo Relevance Feedback),
named as PRFMN.

Implementation Details: LambdaMart is the ranking model of
LeToR, PRF-Feature, and Feedback-Feature. They are trained on

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1567

Table 3: Overall accuracy of the query suggestions systems. Allmethods startingwith “+” are evaluated as additional features in
LeToR. MISS@K are the fraction of sessions whose correct suggestions are not ranked in top K by the corresponding method,
the lower the better. Relative performances over LeToR are shown in percentages. Win/Tie/Loss are the number of sessions
a method improved, did not change, or hurt, compared with LeToR. The superscripts1,2,3,4,5 mark the statistical significant
improvements over LeToR1, +PRF Feature2, +Feedback Feature3, +HRED4 and +PRFMN5. Best results of each metric are marked
Bold.

Method MRR MISS@3 MISS@5 Win/Tie/Loss
ADJ 0.4928 -.5.43% 0.3165 10.7% 0.1484 1.69% 7,232/18,038/11,249
LeToR 0.5211 – 0.2859 – 0.1361 – –/–/–
+PRF Feature 0.52851 1.42% 0.27991 -2.10% 0.12951 -4.85% 9,871/17,875/8,773
+Feedback Feature 0.5341,2 2.48% 0.26751,2 -6.43% 0.11211,2 -17.63% 11,869/14,607/10,043
+HRED 0.5371,2 3.05% 0.23671,2,3 -17.20% 0.11751,2,3 -13.67% 12,961/12,709/10,849
+PRFMN 0.53581,2 2.82% 0.26281,2 -8.08% 0.12071,2,3 -11.32% 12,343/13,804/10,372
+FMN 0.58121,2,3,4,5 11.53% 0.19211,2,3,4,5 -32.80% 0.10851,2,3,4,5 -20.28% 13,146/17,528/5,845

the development fold [25]. The neural models are first trained on the
training fold, and then combined with LeToR by LambdaMart using
the development fold. Their parameters include the word embed-
dings, GRU, and the projection weights used in their components,
as listed in Table 2.

All neural methods are trained using the Adadelta optimizer,
with mini-batch size 64, learning rate 0.01, and anneals every 25
epochs by η/2 until 100 epochs were reached. The weights were
initialized randomly from a Gaussian distribution with zero mean
and σ = 0.1. On a common GPU machine and our PyTorch based
implementation, FMN takes about two and half days to converge
and HRED takes about one day and a half.

Evaluation Metrics: Our main evaluation metric is MRR, the
standard metric in query suggestion. We also include MISS@3,5
which is the fraction of those test sessions whose correct sugges-
tions are not ranked in top3, 5. Statistical significances are tested
using the permutation (Fisher’s Randomization) test with p < 0.05.

5 EVALUATION RESULTS
This section first evaluates the overall accuracy of FMN and its per-
formances in difficult scenarios. Then it analyzes the effectiveness
of the feedback signals in FMN.

5.1 Overall Accuracy
The overall evaluation results are in Table 3. The feature-based sys-
tem, LeToR, performs about 5% better than the frequency-based ADJ,
similar to the relative improvement in prior research [25]. The two
additional feature groups, +PRF Feature and +Feedback Feature,
provided some additional gains but in rather small margins. HRED
significantly outperforms LeToR and +PRF Feature, and performs
better than +Feedback Feature on earlier positions. It benefits
from the large amount of training data available in the search log,
and is able to learn different semantic relations that might not be
covered by the manual features [25].

FMN outperforms all baselines on all metrics. It provides more
improvements than all other features: With 17 manually extracted
features, LeToR improves ADJ by 6%, while FMN itself improved
LeToR by more than 11%. The improvements are also stable. Com-
pared with the base system LeToR, only 16% sessions are hurt and

more than twice are improved, both the best among all the methods.
The feedback awareness greatly improves the neural query sugges-
tion. Compared with HRED, which uses the same query sequence
modeling but without feedback-awareness, FMN improves the MRR
by 8%, and reduces the missed hit in the top 3 by 19%. Knowing
user’s preference is essential to utilize the search results. PRFMN
uses the search results and encodes them by memory networks,
but treats all search results as (pseudo) relevant. The PRF signals
are too noisy to be useful: PRFMN performs worse than HRED which
completely ignores the search results.

FMN models user preferences more effectively. It produces much
more accurate suggestions than Feedback Feature. It is not easy
to design rich features to model the feedback information. On the
contrary, FMN’s distributed representations and neural networks
learn user’s preferences from the large scale search log directly and
effectively.

5.2 Robustness
On the queries where the ‘wisdom of the crowd’ is reliable, all query
suggestion systems can provide reasonably accurate results. What
makes a query suggestion system more desirable in real production
system is its ability to handle more difficult scenarios, where the
‘wisdom of the crowd’ is not as effective. This experiment evaluates
the FMN’s accuracy in two such hard scenarios.

Short and Long Sessions: In context-aware query suggestion,
the varying session length—the number of original queries—imposes
challenges to the suggestion system. A too short session may have
too few signal to infer the information needs. A too long session,
on the other hand, may include noisy queries and drifted search
intents. A robust query suggestion system should be able to provide
accurate suggestions for sessions at variant lengths.

We group the testing sessions by their lengths and evaluate FMN
in each group. The groups are short sessions (1 original query),
medium sessions (2-3 original queries), and long sessions (4+ orig-
inal queries). The distribution of testing sessions at each length
group and corresponding evaluation results are plotted in Figure 4a
and 4b.

As sessions become longer, ADJ performs worse. The frequency-
based method suffers from the noisy and sparse signals on longer

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1568

(a) Session Length Distribution (b) MRR VS. Session Length (c) Click Entropy Distribution (d) MRR VS. Click Entropy

Figure 4: Performance on difficult scenarios. Fig 4a and Fig 4b illustrate the distributions of testing sessions at different length,
and the systems’ accuracies on each group. Fig 4c shows the Cumulative Distribution Function of query’s click entropy. The
three jumps in the CDF divides the click entropies into three groups. Fig 4d is the evaluation results on the sessions grouped
by their last query’s entropy.

sessions. On short sessions, HRED only provides slight improve-
ments; its advantages are more on sessions with 2-3 original queries,
where its two-level sequence learning model has more leverage. On
the other end, when there are more than 3 input queries, HRED’s
vanilla sequence-to-sequence learning may be misled by back-
ground queries, intend drift, or perhaps also the gradient vanishing
problem. More advanced sequence modeling technique such as the
attention mechanism may be required [11].

FMN performs the best on all three groups. Compared to HRED,
the advantages of modeling user feedbacks are actually more re-
markably observed in more extreme cases. On long sessions, user
clicks help FMN stay on track and its effectiveness stays the same as
on medium sessions. On short sessions, the additional information
from user feedbacks help reflect the information needs of the sole
input query. FMN is the only method that outperforms ADJ by a large
margin.

Ambivalent Queries: One advantage of feedback-aware query
suggestion is that the feedback signals can help infer the informa-
tion needs for ambivalent queries. For example, the query ‘apple’
can refer to the company or the fruit; the search target can be Ap-
ple’s homepage or recent products. Without additional information,
the best search engines can do is to bet on the most popular intent
or to diversify. But with the feedback signals, the information need
becomes much more clear: the user’s preference on ‘Apple.com’,
‘apple pie’, or ‘iPhone’ points out what she wanted.

This experiment evaluates FMN on ambivalent queries. The am-
bivalence of a query is described by the entropy of user clicks on its
search results. A more scattered click (high entropy) indicates more
ambivalent search intents, while if all users clicked on the same
result, it might be an easy query for query suggestion systems.

Figure 4c plots the Cumulative Distribution Function (CDF) of
the testing queries’ click entropy. There are three main jumps in the
CDF, which divide the click entropy into three groups: low (entropy
<=0.6, 4.33% queries), medium (entropy in between 0.6-1, 83.11%
queries), and high (entropy > 1.2, 12.56% queries). We grouped the
testing sessions based on their last query’s entropy, and evaluated
the performances in each group. The results are in Figure 4d.

The frequency-based method suffered on ambivalent queries:
ADJ’s MRR drops 30% from low entropy to high entropy sessions.
HRED’s accuracy also drops, though slightly less than ADJ because

HRED considers the entire sequence as a context which can disam-
biguate the last query. However, the query sequence alone may not
be sufficient to reflect the information needs. There is still more
than 10% difference on HRED’s MRR’s between the low and high
entropy sessions. FMN’s performances are very stable in the three
groups. The feedback signals greatly reduce the ambiguity of the
query sequence. The feedback-aware system can provide accurate
query suggestions even on high entropy sessions, with which the
context-aware systems is difficult to deal.

5.3 Source of Effectiveness
This experiment analyzes the influence of feedback signals in FMN.

Feedback Strengths:We first analyze the influence of feedback
signals’ strength in suggestion accuracy. We present two ways to
describe the signal strength: number of clicks and the average click
depths in the session.

Number of Clicks. More clicks in a session provide more feedback
signals and could improve FMN’s accuracy. We divide the testing
sessions into four groups based on their numbers of clicks: no click,
one click, two clicks, and three plus. The distribution of the four
groups are shown in Figure 5a. The majority of sessions have zero
or one click. Those sessions with more than two clicks are less
common. The MRR of ADJ, and the relative improvements of HRED,
PRFMN and FMN over ADJ in the fours groups are plotted in Figure 5b.

ADJ, HRED, and PRFMN perform similarly across the four groups as
none of them uses the feedback signals. The relative improvement
from FMN receives a slight jump from zero click to one click. It
performs about 1 − 2% better when relevance feedback signals are
available. Note that on no click sessions, FMN still outperforms HRED
by a large margin. The reason is that no click indicates that the
user is unsatisfied with the first search result, which is the negative
feedback signal used by FMN—it is still better than no feedback and
can be effectively utilized by FMN.

Click Depths. A click on a lower ranked result implies that the
user has skipped the top ranked ones. Her information need is more
unexpected by the search engine. It might be a stronger feedback
signal than click on the top ranked results. We divided the testing
sessions by their average click depths into four groups: [0, 1], (1,
2], (2, 3], and (3, ∞). Their fractions and corresponding model
performances are shown in Figure 5c and 5d.

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1569

(a) Click Number Distribution (b) MRR VS. Click Number (c) Click Depth Distribution (d) MRR VS. Click Depth

Figure 5: Performance with different amounts of feedback information. Fig 5a and 5c show the distribution of test sessions in
corresponding groups. Their x-axises mark the range of each group, and y-axises are the fractions in the corresponding group.
Fig 5b and 5d are the evaluation results of the query suggestion systems in each group. The absolute MRR’s of ADJ are bared
by their left y-axes; the relative improvements of other methods are on the right y-axes.

Figure 6: Performance of FMN with different amounts of
user feedbacks. The x-axis is the fractions of feedbacks pro-
vided to FMN when testing; the Y-axis is MMR.

The ADJ’s MRR negatively correlates with the click depth: a
lower click indicates more ambivalent search intent. In comparison,
FMN’s relative improvement is positively correlated with the click
depth. FMN has more leverage with the stronger feedback signal,
which is also more useful for more ambivalent search intents as
indicated by the deeper clicks.

Feedback Fraction: The second analysis studies FMN’s perfor-
mance with different amounts of feedback signals. When testing,
we randomly discard a certain fraction of user clicks and evaluate
FMN accuracy accordingly. The results are plotted in Figure 6. The
x-axis is the fraction of clicks used, from none of them are used
(0%) to all of them (100%). The straight line is HRED.

Figure 6 confirms that the source of FMN effectiveness is its
feedback-awareness. Without feedback signal, FMN performs worse
than HRED. Recall that the no click session’s negative feedback sig-
nal is helpful for FMN. However, if all feedback signals are discarded,
the positive and negative feedbacks are mixed, which confuses FMN.
As more feedback signals are included, FMN’s accuracy becomes bet-
ter and better. This strong positive correlation is another evidence
for the effectiveness of feedback-aware query suggestion.

Examples: Table 4 provides some examples of feedback-aware
query suggestion. For the same original query, we select the sessions
where different search results were clicked, and list the queries sug-
gested by FMN. These example queries can refer to various possible
information needs, but the clicked documents reflect the search
intents more clearly. Without additional contexts, the same query
suggestion would be produced for the original query and miss the
diverse search intents, but FMN successfully leveraged the feedback
signal and produced proper query suggestions.

6 CONCLUSIONS AND FUTUREWORK
This paper proposes the Feedback Memory Network (FMN) to model
user feedbacks during a search. The clicked and skipped search
results are more fine-grained reflections of the information needs
behind the original query. FMN encodes the clicked and skipped
documents as the positive and negative feedback memories to rep-
resent user’s preference in the query. These feedback memories
encode the feedback signals provided by the user when interacting
with the search results.

This paper integrates FMN with the hierarchical sequence-to-
sequence neural query suggestion model [25]. It enriches the query
representations in the sequence models with the feedback memo-
ries of FMN. The feedback memory network, and the sequence-to-
sequence modeling of the query sequences are trained end-to-end
using the search log. It leads to a systematic data-driven approach
for feedback-aware query suggestion.

Our experiments on a large scale search log from Sogou, a ma-
jor Chinese search engine, demonstrated the robust advantages
of FMN. Significant improvements are consistently observed over a
frequency-based method, feature-based methods, and neural meth-
ods that do not consider user feedback. FMN’s advantages are more
remarkably observed in more difficult scenarios. On too short or
too long sessions where the information needs are less clear, FMN’s
improvements are larger as the user preferences provide additional
signals. On ambivalent queries, FMN also performs better because
user preferences on the search results conveyed more fine-grained
information and helped infer the information needs.

Our analyses further demonstrate the influence of the feedback
signals on query suggestion. When sessions have more clicks or
when the user clicked on lower ranked search results, the feedback

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1570

Table 4: Examples of FMN’s query suggestions. The clicked documents reflect the variant information needs behind the same
query. FMN incorporates the feedback signals and produces feedback-aware query suggestions.

Query Clicked Document Suggested Query

Apple

Apple serial number lookup Apple serial number
Apple 110 official website Apple official website
Apple (China) - Official Website Apple China official website
Apple club serial number query Apple serial number
Man VS machine war, tencent.com Lee Sedol man VS machine war
Lee Sedol, Sogou Encyclopedia Lee Sedol

Lee Sedol Google AI AlphaGo crack chess game - the era of science and technology AlphaGo VS Lee Sedol on live
Who is the best go player, Lee Sedol or Lee Chang-Ho? Chinese player Ke Jie
beat Lee Sedol to win the championship

Ke Jie beat Lee Sedol

Beautiful pictures of the 2018 FIFA world cup. 2018 FIFA world cup pictures
2018 FIFA world cup 2018 where is the FIFA World Cup held ? 2018 FIFA world cup host city

2018 Russia FIFA world cup, Sogou Encyclopedia 2018 Russia FIFA world cup

signals are richer and more informative, and FMN performs better.
The feedback awareness also improves the query sequence mod-
eling. They help the neural model fit the search behavior better
and improve the suggestion accuracy, even when some feedback
signals are omitted during testing.

FMN aims to provide a general approach to model user’s inter-
actions with the search engine. In the future work, we plan to
integrate feedback memory network to other query suggestion
models as well in other information retrieval tasks.

7 ACKNOWLEDGEMENT
Thiswork is supported by theNational 973 Program (No.2014CB340501)
and the Major Project of the National Social Science Foundation of
China (No.13&ZD190). Chenyan Xiong is supported by National
Science Foundation (NSF) grant IIS-1422676. We thank Sogou for
providing free access to the search log. Any opinions, findings, and
conclusions in this paper are the authors’ and do not necessarily
reflect those of the sponsors.

REFERENCES
[1] Ricardo Baeza-Yates and Alessandro Tiberi. 2007. Extracting Semantic Relations

from Query Logs. In Proceedings of KDD. 76–85.
[2] Ricardo A Baeza-Yates, Carlos A Hurtado, Marcelo Mendoza, et al. 2004. Query

Recommendation Using Query Logs in Search Engines. In Proceedings of EDBT.
[3] Paolo Boldi, Francesco Bonchi, Carlos Castillo, Debora Donato, Aristides Gionis,

and Sebastiano Vigna. 2008. The Query-flow Graph: Model and Applications. In
Proceedings of CIKM. 609–618.

[4] Francesco Bonchi, Raffaele Perego, Fabrizio Silvestri, Hossein Vahabi, and
Rossano Venturini. 2012. Efficient Query Recommendations in The Long Tail via
Center-piece Subgraphs. In Proceedings of SIGIR. 345–354.

[5] Antoine Bordes and Jason Weston. 2016. Learning End-to-end Goal-oriented
Dialog. arXiv preprint arXiv:1605.07683 (2016).

[6] Ilaria Bordino, Gianmarco De Francisci Morales, Ingmar Weber, and Francesco
Bonchi. 2013. From Machu_Picchu to Rafting the Urubamba River: Anticipating
Information Needs via The Entity-query Graph. In Proceedings of WSDM. 275–
284.

[7] Huanhuan Cao, Derek Hao Hu, Dou Shen, Daxin Jiang, Jian-Tao Sun, Enhong
Chen, and Qiang Yang. 2009. Context-aware Query Classification. In Proceedings
of SIGIR. 3–10.

[8] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong Chen, and Hang
Li. 2008. Context-aware Query Suggestion by Mining Click-through and Session
Data. In Proceedings of KDD. 875–883.

[9] Luo Cheng, Zheng Yukun, Liu Yiqun, Xu Jingfang, Zhang Min, and Ma Shaoping.
2017. SogouT-16: A New Web Corpus to Embrace IR Research. In Proceedings of
SIGIR.

[10] Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke. 2015. Click Models for
Web Search. Synthesis Lectures on Information Concepts, Retrieval, and Services 7,
3 (2015), 1–115.

[11] Mostafa Dehghani, Sascha Rothe, Enrique Alfonseca, and Pascal Fleury. 2017.
Learning to Attend, Copy, and Generate for Session-Based Query Suggestion.
arXiv preprint arXiv:1708.03418 (2017).

[12] Qi He, Daxin Jiang, Zhen Liao, Steven C. H. Hoi, Kuiyu Chang, Ee Peng Lim, and
Hang Li. 2009. Web Query Recommendation via Sequential Query Prediction. In
Proceedings of ICDE. 1443–1454.

[13] Zhipeng Huang, Bogdan Cautis, Reynold Cheng, and Yudian Zheng. 2016. KB-
Enabled Query Recommendation for Long-Tail Queries. In Proceedings of CIKM.
2107–2112.

[14] Alpa Jain, Umut Ozertem, and Emre Velipasaoglu. 2011. Synthesizing High Utility
Suggestions for Rare Web Search Queries. In Proceedings of SIGIR. 805–814.

[15] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased
Learning-to-rank with Biased Feedback. In Proceedings of WSDM. 781–789.

[16] Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner. 2006. Generating
Query Substitutions. In Proceedings of WWW. 387–396.

[17] Zhongguo Li and Maosong Sun. 2009. Punctuation as Implicit Annotations for
Chinese Word Segmentation. Computational Linguistics 35, 4 (2009), 505–512.

[18] Qiaozhu Mei, Dengyong Zhou, and Kenneth Church. 2008. Query Suggestion
Using Hitting Time. In Proceedings of CIKM. 469–478.

[19] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of Words and Phrases and Their Compositionality.
In Proceedings of NIPS.

[20] Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bor-
des, and Jason Weston. 2016. Key-value Memory Networks for Directly Reading
Documents. In Proceedings of EMNLP.

[21] Umut Ozertem, Olivier Chapelle, Pinar Donmez, and Emre Velipasaoglu. 2012.
Learning to Suggest: a Machine Learning Framework for Ranking Query Sugges-
tions. In Proceedings of SIGIR. 25–34.

[22] Eldar Sadikov, Jayant Madhavan, Lu Wang, and Alon Halevy. 2010. Clustering
Query Refinements by User Intent. In Proceedings of WWW. 841–850.

[23] Rodrygo LT Santos, Craig Macdonald, and Iadh Ounis. 2013. Learning to Rank
Query Suggestions for Adhoc and Diversity Search. Information Retrieval 16, 4
(2013), 429–451.

[24] Milad Shokouhi. 2013. Learning to Personalize Query Auto-completion. In
Proceedings of SIGIR. 103–112.

[25] Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob Grue
Simonsen, and Jian-Yun Nie. 2015. A Hierarchical Recurrent Encoder-Decoder
For Generative Context-Aware Query Suggestion. In Proceedings of CIKM.

[26] Sainbayar Sukhbaatar, JasonWeston, Rob Fergus, et al. 2015. End-to-end Memory
Networks. In Proceedings of NIPS. 2440–2448.

[27] Idan Szpektor, Aristides Gionis, and Yoelle Maarek. 2011. Improving Recommen-
dation for Long-tail Queries via Templates. In Proceedings of WWW. 47–56.

[28] Hossein Vahabi, Margareta Ackerman, David Loker, Ricardo Baeza-Yates, and
Alejandro Lopez-Ortiz. 2013. Orthogonal Query Recommendation. In Proceedings
of RecSys. 33–40.

[29] Biao Xiang, Daxin Jiang, Jian Pei, Xiaohui Sun, Enhong Chen, and Hang Li. 2010.
Context-aware Ranking in Web Search. In Proceedings of SIGIR. 451–458.

[30] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.
End-to-End Neural Ad-hoc Ranking with Kernel Pooling. In Proceedings of SIGIR.

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1571

	Abstract
	1 Introduction
	2 Related Work
	3 Feedback Memory Network
	3.1 Model Architecture
	3.2 Feedback-Aware Query Suggestion

	4 Experiment
	5 Evaluation Results
	5.1 Overall Accuracy
	5.2 Robustness
	5.3 Source of Effectiveness

	6 Conclusions and Future Work
	7 ACKNOWLEDGEMENT
	References

